Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway (MMP) that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
Type:
Application
Filed:
August 27, 2013
Publication date:
July 23, 2015
Applicant:
Genomatica, Inc.
Inventors:
Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
Abstract: A non-naturally occurring eukaryotic or prokaryotic organism includes one or more gene disruptions occurring in genes encoding enzymes imparting increased fumarate, malate or acrylate production in the organism when the gene disruption reduces an activity of the enzyme. The one or more gene disruptions confers increased production of acrylate onto the organism. Organisms that produce acrylate have an acrylate pathway that at least one exogenous nucleic acid encoding an acrylate pathway enzyme expressed in a sufficient amount to produce acrylate, the acrylate pathway comprising a decarboxylase. Methods of producing fumarate, malate or acrylate include culturing these organisms.
Type:
Grant
Filed:
February 13, 2012
Date of Patent:
June 23, 2015
Assignee:
Genomatica, Inc.
Inventors:
Mark J. Burk, Anthony P. Burgard, Priti Pharkya
Abstract: The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO2 and/or H2 to acetyl-coenzyme A (acetyl-CoA), methyl tetrahydrofolate (methyl-THF) or other desired products, wherein the microorganism lacks the ability to convert CO or CO2 and H2 to acetyl-CoA or methyl-THF in the absence of the one or more exogenous proteins. For example, the microbial organism can contain at least one exogenous nucleic acid encoding an enzyme or protein in an acetyl-CoA pathway. The microbial organism is capable of utilizing synthesis gases comprising CO, CO2 and/or H2, alone or in combination with methanol, to produce acetyl-CoA.
Type:
Grant
Filed:
September 2, 2010
Date of Patent:
June 9, 2015
Assignee:
GENOMATICA, INC.
Inventors:
Mark J. Burk, Christophe H. Schilling, Anthony P. Burgard, John D. Trawick
Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, 1,4-butanediol, or other product pathway and being capable of producing 4-hydroxybutyrate, 1,4-butanediol, or other product, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, 1,4-butanediol, or other product or related products using the microbial organisms.
Type:
Application
Filed:
June 3, 2013
Publication date:
May 28, 2015
Applicant:
Genomatica, Inc.
Inventors:
Priti Pharkya, Anthony P. Burgard, Stephen J. Van Dien, Robin E. Osterhout, Mark J. Burk, John D. Trawick, Michael P. Kuchinskas, Brian Steer
Abstract: The invention provides non-naturally occurring microbial organisms having a propylene pathway. The invention additionally provides methods of using such organisms to produce propylene.
Abstract: A non-naturally occurring microbial organism includes a microbial organism having a 1,3-butanediol (1,3-BDO) pathway having at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme expressed in a sufficient amount to produce 1,3-BDO.
Type:
Grant
Filed:
April 30, 2010
Date of Patent:
April 28, 2015
Assignee:
Genomatica, Inc.
Inventors:
Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
Abstract: A non-naturally occurring microbial organism having an isopropanol pathway includes at least one exogenous nucleic acid encoding an isopropanol pathway enzyme. The pathway includes an enzyme selected from a 4-hydroxybutyryl-CoA dehydratase, a crotonase, a 3-hydroxybutyryl-CoA dehydrogenase, an acetoacetyl-CoA synthetase, an acetyl-CoA:acetoacetate-CoA transferase, an acetoacetyl-CoA hydrolase, an acetoacetate decarboxylase, and an acetone reductase. A non-naturally occurring microbial organism having an n-butanol pathway includes at least one exogenous nucleic acid encoding an n-butanol pathway enzyme. Other non-naturally occurring microbial organism have n-butanol or isobutanol pathways. The organisms are cultured to produce isopropanol, n-butanol, or isobutanol.
Abstract: The present invention aims to provide a method for producing polybutylene terephthalate (PBT) with an excellent color using biomass-derived 1,4-butanediol (BG). The invention relates to a method for producing PBT comprising a step of subjecting a diol component containing raw material 1,4-BG having a nitrogen content of 0.01 to 50 ppm by mass and a dicarboxylic acid component to esterification or ester-exchange reaction, and a polycondensation reaction step for obtaining PBT from the reactant, wherein the content of gamma butyrolactone in the raw material 1,4-BG is 1 to 100 ppm by mass.
Type:
Application
Filed:
December 4, 2014
Publication date:
March 26, 2015
Applicants:
MITSUBISHI CHEMICAL CORPORATION, GENOMATICA, INC.
Inventors:
Masaru UTSUNOMIYA, Yusuke IZAWA, Norikazu KONISHI, Shinichiro MATSUZONO, Takayuki SUZUKI, Michael JAPS, Mark BURK, Warren CLARK
Abstract: At the time of producing a polyester by using a dicarboxylic acid component and a biomass-resource-derived diol as raw materials, a polyester is efficiently produced with good color tone, as the raw material diol derived from biomass resources, a diol in which the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 is from 0.01 to 12 ppm by mass, is used, and by controlling the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 in the raw material diol to fall in a prescribed range, the color tone of the polyester is improved.
Type:
Application
Filed:
December 4, 2014
Publication date:
March 26, 2015
Applicants:
MITSUBISHI CHEMICAL CORPORATION, GENOMATICA, INC.
Inventors:
Masaru UTSUNOMIYA, Yusuke IZAWA, Norikazu KONISHI, Kota TANAKA, Shinichiro MATSUZONO, Takayuki SUZUKI, Michael JAPS, Mark BURK, Warren CLARK
Abstract: An object of the present invention is to provide high-quality 1,4BG capable of working out to a raw material of PBT with good color tone, by efficiently removing and refining impurities mixed when producing a biomass-derived 1,4BG on an industrial scale and the present invention relates to a production method of refined 1,4BG, where a crude 1,4BG-containing solution is obtained from refined raw material 1,4BG obtained by removing bacterial cells, salt contents and water from the fermentation culture medium, through a step of removing high-boiling-point components and/or low-boiling-point components by distillation and/or a step of converting an unsaturated compound to a hydride and the target product is obtained as a side stream in a further distillation step.
Type:
Application
Filed:
December 4, 2014
Publication date:
March 26, 2015
Applicants:
MITSUBISHI CHEMICAL CORPORATION, GENOMATICA, INC.
Inventors:
Masaru UTSUNOMIYA, Yusuke IZAWA, Norikazu KONISHI, Kota TANAKA, Shinichiro MATSUZONO, Takayuki SUZUKI, Michael JAPS, Mark BURK, Warren CLARK
Abstract: The invention provides non-naturally occurring microbial organisms having a (2-hydroxy-3-methyl-4-oxobutoxy) phosphonate (2H3M40P) pathway, p-toluate pathway, and/or terephthalate pathway. The invention additionally provides methods of using such organisms to produce 2H3M40P, p-toluate or terephthalate. Also provided herein are processes for isolating bio-based aromatic carboxylic acid, in particular, p-toluic acid or terephthalic acid, from a culture medium, wherein the processes involve contacting the culture medium with sufficient carbon dioxide (C02) to lower the pH of the culture medium to produce a precipitate comprised of the aromatic carboxylic acid.
Type:
Application
Filed:
January 18, 2013
Publication date:
March 19, 2015
Applicant:
Genomatica, Inc.
Inventors:
Robin E. Osterhout, Anthony P. Burgard, Mark J. Burk
Abstract: The invention provides non-naturally occurring microbial organisms having a toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene pathway. The invention additionally provides methods of using such organisms to produce toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene.
Type:
Application
Filed:
March 26, 2014
Publication date:
March 5, 2015
Applicant:
Genomatica, Inc.
Inventors:
Robin E. OSTERHOUT, Anthony P. Burgard, Priti Pharkya, Mark J. Burk
Abstract: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ?-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB).
Type:
Grant
Filed:
December 17, 2012
Date of Patent:
March 3, 2015
Assignee:
Genomatica, Inc.
Inventors:
Mark J. Burk, Stephen J. Van Dien, Anthony P. Burgard, Wei Niu
Abstract: Provided herein are non-naturally occurring microbial organisms having a formaldehyde fixation pathway and a formate assimilation pathway, which can further include a methanol metabolic pathway, a methanol oxidation pathway, a hydrogenase and/or a carbon monoxide dehydrogenase. These microbial organisms can further include a butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol.
Type:
Application
Filed:
March 14, 2014
Publication date:
February 19, 2015
Applicant:
Genomatica, Inc.
Inventors:
Anthony P. BURGARD, Robin E. OSTERHOUT, Priti PHARKYA, Stefan ANDRAE
Abstract: The invention provides a computer readable medium or media, having: (a) a first data structure relating a plurality of reactants to a plurality of reactions from a first cell, each of said reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (b) a second data structure relating a plurality of reactants to a plurality of reactions from a second cell, each of said reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (c) a third data structure relating a plurality of intra-system reactants to a plurality of intra-system reactions between said first and second cells, each of said intra-system reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a
Type:
Grant
Filed:
July 21, 2005
Date of Patent:
February 3, 2015
Assignee:
Genomatica, Inc.
Inventors:
Imandokht Famili, Christophe H. Schilling
Abstract: The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
Type:
Grant
Filed:
November 2, 2012
Date of Patent:
January 27, 2015
Assignee:
Genomatica, Inc.
Inventors:
Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Mark J. Burk
Abstract: The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO2 and/or H2 to acetyl-coenzyme A (acetyl-CoA), methyl tetrahydrofolate (methyl-THF) or other desired products, wherein the microorganism lacks the ability to convert CO or CO2 and H2 to acetyl-CoA or methyl-THF in the absence of the one or more exogenous proteins. For example, the microbial organism can contain at least one exogenous nucleic acid encoding an enzyme or protein in an acetyl-CoA pathway. The microbial organism is capable of utilizing synthesis gases comprising CO, CO2 and/or H2, alone or in combination with methanol, to produce acetyl-CoA.
Type:
Application
Filed:
February 20, 2014
Publication date:
January 22, 2015
Applicant:
Genomatica, Inc.
Inventors:
Mark J. BURK, Christophe H. SCHILLING, Anthony P. BURGARD, John D. TRAWICK
Abstract: The invention provides a non-naturally occurring microbial organism having n-propanol and isopropanol pathways, 1,4-butanediol (14-BDO) and isopropanol pathways, 1,3-butanediol (13-BDO) and isopropanol pathways or methylacrylic acid (MAA) and isopropanol pathways. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in each of the respective n-propanol, 14-BDO, 13-BDO or MAA and isopropanol pathways. The invention additionally provides a method for co-producing n-propanol and isopropanol, 14-BDO and isopropanol, 13-BDO and isopropanol or MAA and isopropanol. The method can include culturing an n-propanol and an isopropanol co-producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an n-propanol, an isopropanol, a 14-BDO, a 13-BDO and/or a MAA pathway enzyme in a sufficient amount to produce each of the respective products, under conditions and for a sufficient period of time to produce each of the respective products.
Type:
Application
Filed:
January 29, 2014
Publication date:
December 25, 2014
Applicant:
Genomatica, Inc.
Inventors:
Priti PHARKYA, Anthony P. BURGARD, Robin E. OSTERHOUT, Mark J. BURK, Jun SUN
Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine or related products using the microbial organisms.
Type:
Application
Filed:
April 25, 2014
Publication date:
December 18, 2014
Applicant:
Genomatica, Inc.
Inventors:
Priti PHARKYA, Anthony P. BURGARD, Stephen J. VAN DIEN, Robin E. OSTERHOUT, Mark J. BURK, John D. TRAWICK, Michael P. KUCKINSKAS, Brian STEER
Abstract: A non-naturally occurring microbial organism includes a microbial organism having a 1,4-cyclohexanedimethanol pathway that includes at least one exogenous nucleic acid encoding a 1,4-cyclohexanedimethanol pathway enzyme expressed in a sufficient amount to produce 1,4-cyclohexanedimethanol. A method for producing 1,4-cyclohexanedimethanol includes culturing a non-naturally occurring microbial organism having a 1,4-cyclohexanedimethanol pathway. The pathway includes at least one exogenous nucleic acid encoding a 1,4-cyclohexanedimethanol pathway enzyme expressed in a sufficient amount to produce 1,4-cyclohexanedimethanol, under conditions and for a sufficient period of time to produce 1,4-cyclohexanedimethanol.