Patents Assigned to Genus, Inc.
  • Patent number: 6503330
    Abstract: A method and apparatus for performing atomic layer deposition in which a surface of a substrate is pretreated to make the surface of the substrate reactive for performing atomic layer deposition.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: January 7, 2003
    Assignee: Genus, Inc.
    Inventors: Ofer Sneh, Thomas E. Seidel, Carl Galewski
  • Patent number: 6475910
    Abstract: A new method for CVD deposition on a substrate is taught wherein radical species are used in alternate steps to depositions from a molecular precursor to treat the material deposited from the molecular precursor and to prepare the substrate surface with a reactive chemical in preparation for the next molecular precursor step. By repetitive cycles a composite integrated film is produced. In a preferred embodiment the depositions from the molecular precursor are metals, and the radicals in the alternate steps are used to remove ligands left from the metal precursor reactions, and to oxidize or nitridize the metal surface subsequent layers. A variety of alternative chemistries are taught for different films, and hardware combinations to practice the invention are taught as well.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: November 5, 2002
    Assignee: Genus, Inc.
    Inventor: Ofer Sneh
  • Patent number: 6451695
    Abstract: A new method for CVD deposition on a substrate is taught wherein radical species are used in alternate steps to depositions from a molecular precursor to treat the material deposited from the molecular precursor and to prepare the substrate surface with a reactive chemical in preparation for the next molecular precursor step. By repetitive cycles a composite integrated film is produced. In a preferred embodiment the depositions from the molecular precursor are metals, and the radicals in the alternate steps are used to remove ligands left from the metal precursor reactions, and to oxidize or nitridize the metal surface in subsequent layers. A variety of alternative chemistries are taught for different films, and hardware combinations to practice the invention are taught as well.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: September 17, 2002
    Assignee: Genus, Inc.
    Inventor: Ofer Sneh
  • Patent number: 6451119
    Abstract: A new method and apparatus for avoiding contamination of films deposited in layered depositions, such as Atomic Layer Deposition (ALD) and other sequential chemical vapor deposition (CVD) processes, is taught, wherein CVD-deposited contamination of ALD films is prevented by use of a pre-reaction chamber that effectively causes otherwise-contaminating gaseous constituents to deposit on wall elements of gas-delivery apparatus prior to entering the ALD chamber.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: September 17, 2002
    Assignee: Genus, Inc.
    Inventors: Ofer Sneh, Carl J. Galewski
  • Patent number: 6387185
    Abstract: A processing station adaptable to standard cluster tools has a vertically-translatable pedestal having an upper wafer-support surface including a heater plate adapted to be plugged into a unique feedthrough in the pedestal. At a lower position for the pedestal wafers may be transferred to and from the processing station, and at an upper position for the pedestal the pedestal forms an annular pumping passage with a lower circular opening in a processing chamber. A removable, replaceable ring at the lower opening of the processing chamber allows process pumping speed to be tailored for different processes by replacing the ring. In some embodiments the pedestal also has a surrounding shroud defining an annular pumping passage around the pedestal. A unique two-zone heater plate is adapted to the top of the pedestal, and connects to a unique feedthrough allowing heater plates to be quickly and simply replaced.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: May 14, 2002
    Assignee: Genus, Inc.
    Inventors: Kenneth Doering, Carl J. Galewski, Prasad N. Gadgil, Thomas E. Seidel
  • Patent number: 6368954
    Abstract: A semiconductor interconnect structure having a substrate with an interconnect structure patterned thereon, a barrier layer, a pre-seed layer, a seed layer, a bulk interconnect layer, and a sealing layer. A process for creating such structures is described. The barrier layer is formed using atomic layer deposition techniques. Subsequently, a pre-seed layer is formed to create a heteroepitaxial interface between the barrier and pre-seed layers. This is accomplished using atomic layer epitaxy techniques to form the pre-seed layer. Thereafter, a seed layer is formed by standard deposition techniques to create a homoepitaxial interface between the seed and pre-seed layers. Upon this layered structure further bulk deposition of conducting materials is done. Excess material is removed from the bulk layer and a sealing layer is formed on top to complete the interconnect structure.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: April 9, 2002
    Assignees: Advanced Micro Devices, Inc., Genus Inc.
    Inventors: Sergey D. Lopatin, Carl Galewski, Takeshi T. N. Nogami
  • Patent number: 6284673
    Abstract: A showerhead diffuser apparatus for a CVD process has a first channel region having first plural independent radially-concentric channels and individual gas supply ports from a first side of the apparatus to individual ones of the first channels, a second channel region having second plural independent radially-concentric channels and a pattern of diffusion passages from the second channels to a second side of the apparatus, and a transition region between the first channel region and the second channel region having at least one transition gas passage for communicating gas from each first channel in the first region to a corresponding second channel in the second region. The showerhead apparatus has a vacuum seal interface for mounting the showerhead apparatus to a CVD reactor chamber such that the first side and supply ports face away from the reactor chamber and the second side and the patterns of diffusion passages from the second channels open into the reactor chamber.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: September 4, 2001
    Assignee: Genus Inc.
    Inventor: Scott William Dunham
  • Patent number: 6206972
    Abstract: A showerhead diffuser apparatus for a CVD process has a first channel region having first plural independent radially-concentric channels and individual gas supply ports from a first side of the apparatus to individual ones of the first channels, a second channel region having second plural independent radially-concentric channels and a pattern of diffusion passages from the second channels to a second side of the apparatus, and a transition region between the first channel region and the second channel region having at least one transition gas passage for communicating gas from each first channel in the first region to a corresponding second channel in the second region. The showerhead apparatus has a vacuum seal interface for mounting the showerhead apparatus to a CVD reactor chamber such that the first side and supply ports face away from the reactor chamber and the second side and the patterns of diffusion passages from the second channels open into the reactor chamber.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: March 27, 2001
    Assignee: Genus, Inc.
    Inventor: Scott William Dunham
  • Patent number: 6200893
    Abstract: A new method for CVD deposition on a substrate is taught wherein radical species are used in alternate steps to depositions from a molecular precursor to treat the material deposited from the molecular precursor and to prepare the substrate surface with a reactive chemical in preparation for the next molecular precursor step. By repetitive cycles a composite integrated film is produced. In a preferred embodiment the depositions from the molecular precursor are metals, and the radicals in the alternate steps are used to remove ligands left from the metal precursor reactions, and to oxidize or nitridize the metal surface in subsequent layers. A variety of alternative chemistries are taught for different films, and hardware combinations to practice the invention are taught as well.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: March 13, 2001
    Assignee: Genus, Inc
    Inventor: Ofer Sneh
  • Patent number: 6174377
    Abstract: A processing station adaptable to standard cluster tools has a vertically-translatable pedestal having an upper wafer-support surface including a heater plate adapted to be plugged into a unique feedthrough in the pedestal. At a lower position for the pedestal wafers may be transferred to and from the processing station, and at an upper position for the pedestal the pedestal forms an annular pumping passage with a lower circular opening in a processing chamber. A removable, replaceable ring at the lower opening of the processing chamber allows process pumping speed to be tailored for different processes by replacing the ring. In some embodiments the pedestal also has a surrounding shroud defining an annular pumping passage around the pedestal. A unique two-zone heater plate is adapted to the top of the pedestal, and connects to a unique feedthrough allowing heater plates to be quickly and simply replaced.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: January 16, 2001
    Assignee: Genus, Inc.
    Inventors: Kenneth Doering, Carl J. Galewski, Prasad N. Gadgil, Thomas E. Seidel
  • Patent number: 6130159
    Abstract: Processing of substrates in a CVD reactor system wherein tungsten silicide is deposited is accomplished with preflow and postflow of reducing gases before and after deposition steps to ensure that tungsten-rich film is not deposited at the interface of the tungsten silicide film to the substrates or on the tungsten silicide film at the end of deposition processing. For systems having a remote gas injection and flow control system connected by a gas supply manifold to a CVD reactor chamber, an isolation valve is provided in the gas supply manifold, and the valve is held closed during at least a portion of time between deposition sequences.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 10, 2000
    Assignee: Genus, Inc
    Inventors: Sien G. Kang, John Y. Adachi, David Badt, Edward L. Sill, Hector Velasco
  • Patent number: 5963836
    Abstract: Processing of substrates in a CVD reactor system wherein tungsten silicide is deposited is accomplished with preflow and postflow of reducing gases before and after deposition steps to ensure that tungsten-rich film is not deposited at the interface of the tungsten silicide film to the substrates or on the tungsten silicide film at the end of deposition processing. For systems having a remote gas injection and flow control system connected by a gas supply manifold to a CVD reactor chamber, an isolation valve is provided in the gas supply manifold, and the valve is held closed during at least a portion of time between deposition sequences.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: October 5, 1999
    Assignee: Genus, Inc.
    Inventors: Sien G. Kang, John Y. Adachi, David Badt, Edward L. Sill, Hector Velasco
  • Patent number: 5879459
    Abstract: A low profile, compact atomic layer deposition reactor (LP-CAR) has a low-profile body with a substrate processing region adapted to serve a single substrate or a planar array of substrates, and a valved load and unload port for substrate loading and unloading to and from the LP-CAR. The body has an inlet adapted for injecting a gas or vapor at the first end, and an exhaust exit adapted for evacuating gas and vapor at the second end. The LP-CAR has an external height no greater than any horizontal dimension, and more preferably no more than two-thirds any horizontal dimension, facilitating a unique system architecture. An internal processing region is distinguished by having a vertical extent no greater than one fourth the horizontal extent, facilitating fast gas switching. In some embodiments one substrate at a time is processed, and in other embodiments there may be multiple substrates arranged in the processing region in a planar array.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: March 9, 1999
    Assignee: Genus, Inc.
    Inventors: Prasad N. Gadgil, Thomas E. Seidel
  • Patent number: 5858471
    Abstract: A deposition process provides selective areal deposition on a substrate surface having separate areas of different materials comprises forming a plasma over the substrate, injecting coating species into the plasma by either of sputtering or gaseous injection, adding a reactive gas for altering surface binding energy at the coating surface, and biasing the substrate during deposition to bombard the substrate with ionic species from the plasma. Surface binding energy is altered, in the general case, differently for the separate areas, enhancing selectivity. Bias power is managed to exploit the alteration in surface binding energy. In the case of gaseous injection of the coating species, and in some cases of sputtering provision of the coating material, the temperature of the substrate surface is managed as well. In an alternative embodiment, selectivity is to phase of the coating material rather than to specific areas on the substrate, and a selected phase may be preferentially deposited on the substrate.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: January 12, 1999
    Assignee: Genus, Inc.
    Inventors: Mark A. Ray, Gary E. McGuire
  • Patent number: 5855675
    Abstract: A processing station adaptable to standard cluster tools has a vertically-translatable pedestal having an upper wafer-support surface including a heater plate adapted to be plugged into a unique feedthrough in the pedestal. At a lower position for the pedestal wafers may be transferred to and from the processing station, and at an upper position for the pedestal the pedestal forms an annular pumping passage with a lower circular opening in a processing chamber. A removable, replaceable ring at the lower opening of the processing chamber allows process pumping speed to be tailored for different processes by replacing the ring. In some embodiments the pedestal also has a surrounding shroud defining an annular pumping passage around the pedestal. A unique two-zone heater plate is adapted to the top of the pedestal, and connects to a unique feedthrough allowing heater plates to be quickly and simply replaced.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: January 5, 1999
    Assignee: Genus, Inc.
    Inventors: Kenneth Doering, Carl J. Galewski
  • Patent number: 5838012
    Abstract: A charge exchange cell for ion implanters employing a tandem accelerator has a hollow-wall construction with a heating element inserted inside the hollow wall.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: November 17, 1998
    Assignee: Genus, Inc.
    Inventors: Marvin LaFontaine, Nobuhiro Tokoro, Victor Quattrini, Daniel Bissonnette, Takao Sakase
  • Patent number: 5821589
    Abstract: CMOS vertically modulated wells are constructed by using a blanket implant to form a blanket buried layer and then using clustered MeV ion implantation to form a structure having a buried implanted layer for lateral isolation in addition to said blanket buried layer.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: October 13, 1998
    Assignee: Genus, Inc.
    Inventor: John O. Borland
  • Patent number: 5814866
    Abstract: CMOS vertically modulated wells have a structure with a buried implanted layer for lateral isolation (BILLI). This structure includes a field oxide area, a first retrograde well of a first conductivity type, a second retrograde well of a second conductivity type adjacent the first well, and a BILLI layer below the first well and connected to the second well by a vertical portion. This structure has a distribution in depth underneath the field oxide which kills lateral beta while preventing damage near the surface under the field oxide.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: September 29, 1998
    Assignee: Genus, Inc.
    Inventor: John O. Borland
  • Patent number: 5762755
    Abstract: A method for achieving greater uniformity and control in vapor phase etching of silicon, silicon oxide layers and related materials associated with wafers used for semiconductor devices comprises the steps of first cleaning the wafer surface to remove organics, followed by vapor phase etching. An integrated apparatus for cleaning organic and, subsequently, vapor phase etching, is also described.In embodiments of the invention cooling steps are incorporated to increase throughput, an on-demand vaporizer is provided to repeatably supply vapor at other than azeotropic concentration, and a residue-free etch process is provided.
    Type: Grant
    Filed: December 21, 1992
    Date of Patent: June 9, 1998
    Assignee: Genus, Inc.
    Inventors: Michael A. McNeilly, John M. deLarios, Glenn L. Nobinger, Wilbur C. Krusell, Dah-Bin Kao, Ralph K. Manriquez, Chiko Fan
  • Patent number: 5501993
    Abstract: CMOS vertically modulated wells are constructed by using clustered MeV ion implantation to form a structure having a buried implanted layer for laterial isolation.
    Type: Grant
    Filed: November 22, 1994
    Date of Patent: March 26, 1996
    Assignee: Genus, Inc.
    Inventor: John O. Borland