Abstract: A method of adaptively controlling the speed of a reference vehicle having a controller is provided. The method includes detecting a target vehicle, setting a reference vehicle headway distance indicative of a desired separation between the reference vehicle and the target vehicle, receiving at the reference vehicle, target vehicle data from the target vehicle, and modifying the reference vehicle headway distance as a function of the target vehicle data. The target vehicle data includes a braking capability value (BCT) of the target vehicle. A braking capability value (BCR) for the reference vehicle is also determined. If the BCR or BCT indicates a less than optimum braking capability for the reference or target vehicles, the reference vehicle headway distance is increased. In this way, the relative braking capability of the two vehicles is used to modify the reference vehicle headway distance during adaptive cruise control operation.
Type:
Grant
Filed:
October 17, 2002
Date of Patent:
April 19, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Ronald Hugh Miller, Medville Jay Throop, Rena Hecht Basch
Abstract: An electrical system for increasing the amount of voltage available to an electric power steering motor under high demand conditions includes a vehicle speed sensor that ascertains the speed of the vehicle, a steering wheel sensor that ascertains the rotational speed of the vehicle steering wheel, and a steering voltage controller that receives the signals provided by the vehicle speed sensor and the steering wheel sensor and processes these input signals to increase the voltage furnished to the power steering system by causing at least one component that consumes electrical power in the vehicle to reduce power consumption, or by causing a component that produces electrical power to increase power output, or by a combination of reducing power consumption and increasing power production.
Type:
Grant
Filed:
January 29, 2003
Date of Patent:
April 19, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Kevin Michael Bullister, Timothy Gerard Offerle
Abstract: A direct injection engine is coupled to a vacuum brake booster wherein vacuum created from engine pumping is used to supplement driver braking force. The brake booster is coupled through a check valve to the engine intake manifold. A method is disclosed for estimating pressure in the brake booster based on operating conditions. A method is also disclosed for estimating operating parameters based on measured brake booster pressure. Further, a method is disclosed for diagnosing degradation, or monitoring, a brake booster pressure sensor based on operating conditions. In addition, a method is disclosed for diagnosing degradation in other vehicle and engine sensors based on measured brake booster pressure.
Type:
Grant
Filed:
July 28, 2003
Date of Patent:
April 19, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
James Michael Kerns, John David Russell
Abstract: A device for measuring the flux received by a specimen in fire test apparatuses has a copper disk or plate of the same dimensions and the same type of surface coating as a typical material specimen, an embedded heating coil and thermocouple, and an insulated sample holder similar to that used for a specimen. The transient response of the embedded thermocouple is measured for several different levels of imposed incident radiation without electrical heating and for several different known levels of electrical heating without any imposed radiation. The principle of Electrical Substitution Radiometry (ESR) is applied, and the transient responses to incident radiation and electrical heating under identical thermal conditions are compared to determine the amount of incident radiation that is actually absorbed by the device while it is being irradiated. The situations are kept thermally identical, thereby insuring that all effects due to heat losses (e.g. convection, radiation and conduction) are exactly the same.
Abstract: A method of controlling torque output of an engine including receiving an acceleration pedal position signal and receiving an engine speed signal. The method also includes calculating a modified engine speed signal as a function of the engine speed signal and the acceleration pedal position signal. The method further includes requesting engine output torque as a function of the acceleration pedal position signal and the modified engine speed signal.
Abstract: A system and method for controlling an internal combustion engine determine a catalyst gain based on an exhaust gas sensor positioned upstream relative to a catalyst and at least one exhaust gas sensor positioned downstream relative to at least a portion of the catalyst and use the gain to determine the condition or performance of the catalyst. The gain may be determined by modeling the catalyst as an integrator with an unknown gain and estimating the gain using a polynomial approximation. The gain is compared to an expected value or threshold associated with current operating conditions, such as catalyst temperature and/or mass air flow.
Type:
Grant
Filed:
June 4, 2003
Date of Patent:
April 12, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Imad Hassan Makki, Gopichandra Surnilla, James Michael Kerns, Stephen B. Smith
Abstract: A hybrid electric vehicle drive system or transaxle 10 including an internal combustion engine 12, a generator/motor 14 which is coupled to engine 12 by use of a planetary gear set 20, and an electric motor 16. Drive system 10 includes a brake or clutch assembly 34 which is operatively and selectively coupled to a generator/motor 14 and is effective to supplement the generator-produced reaction torque, thereby cooperating with the generator/motor 14 to control the speed of engine 12.
Abstract: An imaging system includes an x-ray source coupled to a gantry. The x-ray source generates an x-ray flux, wherein a portion of the x-ray flux becomes scatter radiation. A scatter detector is also coupled to the gantry to receive the scatter radiation. The scatter detector generates a scatter signal in response to the scatter radiation, and a host computer receives the scatter signal.
Type:
Grant
Filed:
May 10, 2002
Date of Patent:
April 12, 2005
Assignee:
GE Medical Systems Global Technology, LLC
Abstract: A glass composition consisting essentially by mol percent of about 55<SiO2<75; 5<BaO<30; and 2 <MgO<22 for use as a matrix of composite materials. A method of making a glass matrix-ceramic particulate composition useful for sealing electrochemical structures, such as solid oxide fuel cells is also disclosed. Method steps include the admixture of finely divided Mg2SiO4 particulates with the matrix glass, to reach an overall composition by mol percent of about 55<SiO2<65; 5<BaO<15; and 25<MgO<35.
Abstract: An automotive vehicle has a door adapted to pivot about a generally horizontal pivot axis, with the door including a shell defining a space surrounded by the shell. The door is pivoted upon bearings located at each end of the door. A full floating torsion bar is provided and includes a first end rotationally grounded to the door shell and a second end engaged with and rotationally locked with a bearing inserts so that the torsion bar will be subjected to torsional loading as the door is pivoted. At least a portion of the torsion bar extends along an external recess defined by the door's inner and outer panels.
Type:
Grant
Filed:
June 18, 2004
Date of Patent:
April 5, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Steve L. Bruford, Duane A. Koehler, Ed Rybarczyk, Scott G. Miller
Abstract: A method for estimating a cylinder specific performance parameter for a specific cylinder of an internal combustion engine for each firing attempt, which relies on production sensors commonly equipped onboard production vehicles, is disclosed.
Type:
Grant
Filed:
June 20, 2002
Date of Patent:
April 5, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
John Victor James, Margherita Zanini-Fisher, Ryan Lee Baker
Abstract: A method for operating a variable compression ratio internal combustion engine includes the steps of determining a compression ratio operating state of the engine, and inferring a torque output for the engine based at least in part on the compression ratio operating state of the engine. For example, brake engine torque can be computed by first determining a compression ratio operating state, rotational speed and air flow of the engine, and selecting predetermined baseline indicated torque and baseline engine friction loss values based on the engine speed, the air flow and compression ratio operating state. The baseline indicated torque and baseline engine friction loss values are then used to estimate the brake engine torque.
Abstract: A system including an induction machine with a toroidally wound stator and a squirrel cage rotor is presented. The toroidally wound stator has a plurality of phase windings. A position sensor may be operatively connected to the induction machine for providing a position indication that is indicative of a relative position of the rotor and the stator. The system also includes an inverter having a plurality of solid-state switches and a control system. The inverter has the same number of phases as the toroidal induction machine. The inverter is connected to selectively energize the phase windings. A programmable microprocessor, such as a digital signal processor, is operatively connected to the induction machine and includes a program to implement vector control of the induction machine. The microprocessor can also control the inverter so that the induction machine operates with a predetermined number of poles using pole phase modulation.
Type:
Grant
Filed:
December 2, 2000
Date of Patent:
April 5, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Victor R. Stefanovic, John Michael Miller
Abstract: A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
Abstract: A method for determining the efficiency of a three-way catalyst is presented. It is shown that more accurate results are achieved if the efficiency estimates are performed when the engine is at idle or during low load operating conditions. The efficiency is inferred from the amount of fuel required to purge the device after it has been fully saturated with oxidants due to lean operation. Due to improved accuracy and reduced reductant waste, this method allows for improved emission control and fuel efficiency.
Type:
Grant
Filed:
October 28, 2002
Date of Patent:
April 5, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Grant Alan Ingram, Gopichandra Surnilla
Abstract: A method of real time collision detection between geometric models includes the steps of identifying a current tracking point of a force feedback device colliding with a mesh model of the geometric model and identifying a current triangle associated with the current tracking point, wherein the force feedback device is operatively connected to a computer system. The method also includes the steps of determining a new tracking point of the force feedback device colliding with the mesh model by approximating the new tracking point from the current tracking point and the current triangle, and determining a state of the new tracking point and a known state using the new tracking point and the state of the previous tracking point, wherein the state is inside, on an edge or on a vertex of either the current triangle or a new triangle.
Abstract: A method to compute, store, and inject adaptive valve timing corrections in a camless valvetrain architecture where a measurable (based on the resolution of the measuring methodology) error exists between the requested and delivered valve timing. This method is based on a measurement of the delivered valve timing, such as from a direct position sensor, (hall effect, LVDT, optical, etc.) or inferred position sensing based on valve actuator current (electronic actuation) or pressure (hydraulic actuation) feedback. This measured delivered valve timing information is used to compute offsets which, when applied to the desired timing, provide more accurate correlation between the delivered timing and the desired timing.
Type:
Grant
Filed:
January 9, 2004
Date of Patent:
March 29, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Vince Winstead, Ilya V. Kolmanovsky, Nate Trask