Abstract: An internal combustion engine arrangement 7 with a variable cam timing unit pressurized oil supply arrangement 49 is provided. A first pump 44 delivers oil through a first check valve 62 to a VCT unit 83 and additionally provides oil to the engine lubrication system. A second oil pump 104 provides pressurized oil to the VCT unit 83 through a second check valve 106. An accumulator 114 is connected between the first 62 and second 106 check valves to pressurize oil delivered to the variable cam timing unit 83.
Abstract: For the purpose of obtaining an image having a large slice thickness, such as a thickness twice or three times the size of a multi-row detector as measured in the Z?-axis direction, based on raw data collected by an axial scan or helical scan using the detector, raw data (d1-d6) of three or more adjacent detector rows collected using a multi-row detector (24) having three or more detector rows are multiplied by cone-beam reconstruction weights (Wi) and Z-filter weights (wi), and are added to obtain one projection datum (Dg). Backprojection processing is applied to the projection datum (Dg) to obtain a pixel datum.
Type:
Grant
Filed:
August 12, 2003
Date of Patent:
March 29, 2005
Assignee:
GE Medical Systems Global Technology, LLC
Abstract: A composite pickup box for an automotive vehicle is constructed of extruded floor beams combined with extruded wall sections and extruded corner sections. An outer skin is attached to the wall sections in such manner as to cover the exterior portions of the wall sections and corner sections.
Type:
Grant
Filed:
June 27, 2003
Date of Patent:
March 29, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Ramkrishna Vijay Bhat, Jason Allan Marable, Cliff Robert Reitzloff
Abstract: An impact energy transmitting arrangement (10) for transmitting energy, which arises during impact between a vehicle (12) on which the arrangement (10) is mounted and a foreign body, to a vehicle structure (14). The arrangement includes first means (18) displaceable in a first direction, and second means (20) adapted for co-operation with the first means. The first and second means are operable such that the arrangement, below a first predetermined value of a parameter representative of the energy to be transmitted, presents a first resistance-to-displacement value and, above the first predetermined value, presents a second resistance-to-displacement value. The first resistance-to-displacement value is greater than the second resistance-to-displacement value. In this manner, a bumper assembly which is stiff at very low speeds is rendered less stiff at higher speeds which otherwise could cause injury to pedestrians.
Abstract: A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
Abstract: The present invention relates to a metal profile (1), for a vehicle body section. The profile includes side walls (10a, 10b), a base plate (8) and two support walls (2a, 2b). The walls (2a, 2b, 10a, 10b) and base plate (8) constituting a sectional area with at least three hollow sections (6a, 6b, 7). The base plate (8) and said support walls (2a, 2b) constitute an internal section (7), of said metal profile with a substantially triangular sectional area. The internal triangular section (7) having substantially three corners (9, 11, 12).The invention also relates to a body section and a vehicle that includes the metal profile.
Abstract: A hybrid electric vehicle 10 and a method for operating the hybrid electric vehicle 10 is provided. Combustion is made to occur within the internal combustion engine 24 only after the crankshaft 25 of the engine 24 has been rotated by an electric motor or generator 30 to a certain speed and according to a certain ramped or partially ramped profile 114, 112, thereby reducing the amount of emissions from the engine 24, allowing for a more efficient torque transfer to wheels 42, and allowing for a smoother operation of the vehicle 10. The fuel injectors 13, throttle plate 11, and spark plugs 15 are also controlled in order to allow emissions to be reduced during activation of the engine and to allow the catalytic converter 7 to be heated in order to allow these emissions to be further reduced as the engine 24 is operating.
Type:
Grant
Filed:
December 4, 2003
Date of Patent:
March 22, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
David Lee Boggs, Jerry D. Robichaux, Mark William Peters, Paul Michael Deniston, Stephen John Kotre
Abstract: A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
Abstract: A method and system for controlling fuel for an internal combustion engine. Two fuel demand signals are provided, one from an idle speed fuel controller (i.e., a base fuel demand signal) and one from pedal position (i.e., an unmodified pedal fuel demand signal). The pedal position signal is a function of engine speed and actual pedal position. A modified pedal position fuel demand signal is produced. The modified pedal fuel demand signal is equal to the unmodified pedal fuel demand increased by a bias value. The bias value is a predetermined offset, or hysteresis value, from the base fuel demand signal. The actual fuel supplied to the engine is equal to the greater of the base fuel demand signal and the modified pedal fuel demand signal. With such method, the amount of dead pedal time delay is reduced.
Abstract: A permanent magnet motor to reduce torque ripple includes a rotor having at least three segments. Each of the three segments is formed sequentially adjacent and aligned along an axis of the rotor. Each segment has at least one pair of permanent magnets disposed at a substantially equal interval in a peripheral direction of the rotor. First and second segments are skewed relative to each other by a first angular displacement, and the first and third segments are skewed relative to each other by a second angular displacement. The first and second angular displacements are selected to cause a net sum of torque ripple produced by each of the segments to be substantially equal to zero during an operation of the motor.
Abstract: Regenerative braking is actuated in an electrical vehicle during towing of the vehicle to recharge the battery and brake the vehicle. When a driver of a towing vehicle depresses the brakes of the vehicle (202), the electrical vehicle applies regenerative braking in proportion to a braking signal from the towing vehicle (206). Also, regenerative braking is applied to the electrical vehicle when the vehicle is inadvertently disconnected from a connector (110) that couples the electrical vehicle to the towing vehicle (208).
Type:
Grant
Filed:
May 3, 2001
Date of Patent:
March 15, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Melvin Douglas Palmer, William P. Milam
Abstract: A traction drive having multiple toroidal discs and power rollers located in toroidal cavities defined by the discs. Each roller is mounted in a trunnion and the trunnion is positioned in a gimbal frame wherein the axis of the trunnion is displaced through a caster angle about the roller axis.
Abstract: A device is provided for measuring heat flux from a test material exposed to a flame. The device includes of an elongate element defining a passageway for a fluid, a fluid flowing through the passageway, a mechanism for measuring the rate of water flow through the passageway, and a plurality of temperature-sensing elements positioned along the passageway and within the elongate element. The temperature-sensing elements are spaced from one another longitudinally with respect to the passageway.
Type:
Grant
Filed:
November 13, 2002
Date of Patent:
March 8, 2005
Assignee:
FM Global Technologies, LLC
Inventors:
Ronald L. Alpert, John L. de Ris, Lawrence Orloff
Abstract: A collision warning and countermeasure system (10) for an automotive vehicle (12) is provided. The system (10) includes a transmission gear sensor (20) that generates a transmission gear signal. A multi-mode object detection sensor (28) generates an object detection signal. The multi-mode object detection sensor (28) operates in a detection mode in response to the transmission gear signal. A controller (26) is electrically coupled to the transmission gear sensor (20) and the multi-mode object detection sensor (28) and generates a countermeasure signal in response to the object detection signal. A method of performing the same is also provided.
Type:
Grant
Filed:
July 25, 2002
Date of Patent:
March 8, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Manoharprasad K. Rao, Kwaku O. Prakah-Asante, Gary Steven Strumolo, Robert Kwiecinski
Abstract: In order to reduce the amount of computation in the cone beam reconstruction, the invention provides, from within raw data acquired using a multidetector, extracting raw data Dr corresponding to plural lines on reconstruction field (S4), generating projection line data (S5) by multiplying raw data with cone beam reconstruction weight, filtering projection line data to generate image positional line data Df (S6), determining back projection pixel data (S7, S8, S9) of each pixel on the reconstruction field based on the image positional line data, adding, for each pixel, back projection pixel data of all views used for the image reconstruction to determine back projection data (S10, S11). The number of lines may be variable in compliance with a desired image quality.
Type:
Grant
Filed:
May 21, 2003
Date of Patent:
March 8, 2005
Assignee:
GE Medical Systems Global Technology, LLC
Abstract: A method for improving NOx conversion efficiency of a lean exhaust gas aftertreatment device by determining an accurate amount of reductant required is presented. The method includes calculating a base reductant injection amount based on a steady state amount of NOx in the engine feedgas and adjusting the base amount to compensate for transient NOx emissions. The method further teaches using an air assist heated reductant delivery system to inject the adjusted base reductant amount into the device, thus further improving NOx conversion efficiency of the device.
Type:
Grant
Filed:
November 21, 2002
Date of Patent:
March 8, 2005
Assignee:
Ford Global Technologies, LLC
Inventors:
Devesh Upadhyay, Michiel J. van Nieuwstadt, William Charles Ruona
Abstract: A side impact crash detection system (12) for an automotive vehicle (10) is provided that has a side impact sensor (16) that generates a relative closing velocity signal of an object (18). A side slip sensor (24) is positioned within the vehicle and generates a side slip signal corresponding to the side slip of the vehicle (10). A controller (14) is coupled to the side impact sensor and the side slip sensor. The controller (14) generates an object tracking signal in response to the relative closing velocity signal and the side slip signal of the vehicle.