Abstract: A system is provided for shifting gears in a cycle. The shifter system includes a motor that delivers a torque to propel the cycle. A variable ratio transmission is coupled with the motor. A cable transmits movement to shift the variable ratio transmission. A cable pulley is connected with the cable and is rotated to move the cable. A lever is coupled with the cable pulley and imparts rotation to the cable pulley. A sensor is positioned to detect an initial input on the lever that does not rotate the cable pulley. A controller interrupts the torque from the motor in response to the initial input and prior to a shift in response to the transmission of movement by the cable.
Type:
Grant
Filed:
March 12, 2018
Date of Patent:
December 3, 2019
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Martin Juhas, Andje U. Lewkowicz-Lalonde
Abstract: An automotive vehicle includes an internal combustion engine that outputs exhaust gas from a cylinder, and an active thermal management system. The active thermal management system flows coolant around the cylinder thereby varying an exhaust temperature of the exhaust gas. An electronic engine controller controls the internal combustion engine and the active thermal management system. The engine controller generates a control signal to selectively operate the active thermal management system in a normal mode, a thermal increase mode, and a thermal decrease mode. The normal mode flows the coolant at a first coolant temperature. The thermal increase mode flows the coolant at a second coolant temperature greater than the first coolant temperature thereby increasing the exhaust temperature of the exhaust gas. The thermal decrease mode flows the coolant at a third coolant temperature less than the first coolant temperature thereby decreasing the exhaust temperature of the exhaust gas.
Type:
Grant
Filed:
May 3, 2017
Date of Patent:
December 3, 2019
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Sami Ahmed, Michael A. Smith, Michelangelo Ardanese, Daniel J. Shepard
Abstract: Systems and method are provided for controlling a vehicle. In one embodiment, a method includes: receiving a current position of the vehicle along a determined path; retrieving map information that includes a pitch and a curvature of a roadway at or near the current position; determining, based on the map information, a planned pitch and a planned roll of the vehicle at or near the current position; determining, based on the planned pitch and the planned roll, a location of the field of view of the sensing device; determining, based on the location of the field of view and a location of an area of interest, an amount of movement of the sensing device to align the field of view with the area of interest; and generating, one or more control signals to one or more actuators associated with the sensing device based on the determined amount of movement.
Abstract: A fluid management system for an automotive propulsion system is provided. The fluid management system includes a conduit system configured to deliver hydraulic fluid. A housing defining a sump is configured to collect a volume of hydraulic fluid and gaseous fluid. At least one intake valve is disposed in selective fluid communication with the conduit system and the sump. The intake valve(s) is/are configured to allow the passage of the hydraulic fluid from the sump to the conduit system and to substantially prevent the passage of the gaseous fluid from the sump to the conduit system. Thus, hydraulic fluid that is substantially free of air is provided to hydraulic system components downstream of the intake valve(s).
Abstract: Technical solutions are described to for determining thickness of a vehicle brake rotor. An example method includes providing vehicle parameters that identify operating conditions of a vehicle, and using the vehicle parameters to determine work done by a brake of the vehicle as brake-work. Further, the method includes using the brake work to determine brake rotor temperature, and using the brake rotor temperature to determine brake rotor wear. The method further includes accumulating the brake rotor wear to provide an estimation of the thickness of the vehicle brake rotor.
Type:
Grant
Filed:
July 17, 2017
Date of Patent:
December 3, 2019
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
David B. Antanaitis, Mark T. Riefe, Matthew A. Robere
Abstract: Methods and devices for manufacturing paneled structures are provided. The methods include manufacturing a frame structure by additive manufacturing methods and scanning a surface of the frame structure to determine whether there is more than a nominal surface deviation at a location where a panel will be disposed. When there is more than a nominal surface deviation, the methods also include generating a panel to be disposed at the location of the frame structure, wherein the panel has an engagement surface that is complimentary to the surface deviation.
Type:
Grant
Filed:
November 13, 2015
Date of Patent:
December 3, 2019
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Hamid G. Kia, Jorge F. Arinez, John P. Spicer, Ningjian Huang
Abstract: A device holds a floor of a vehicle in an open position to provide access to an underfloor storage compartment that is covered by the floor when the floor is in a closed position. The device includes a mounting bracket fixed to the vehicle and a support tab pivotally connected to the mounting bracket. The support tab pivots between a first position in the path of the floor and a second position outside of the path of the floor. The support tab pivots in a first direction from the first position to the second position when the floor contacts a bottom surface of the support tab as the floor is raised past the support tab. The support tab automatically returns to the first position. The support tab supports and holds the floor in the open position when the floor is lowered onto the support tab.
Abstract: A parking actuator assembly for an automatic transmission includes a park pawl that is rotatable between an in-park position and an out-of-park position. An actuator assembly is configured to be moved between a park-actuated position and a park-disengaged position, the actuator assembly being configured to rotate the park pawl into the in-park position when the actuator is moved into the park-actuated position. An actuator rod is slidably coupled to the actuator assembly. In some forms, the actuator assembly remains in contact with the park pawl from the park-actuated position to the park-disengaged position. In some forms, at least one latching solenoid is included, and the latching solenoid(s) as well as a park actuator motor may be disposed within a main transmission system. A verification sensor may be included to determine the position.
Type:
Grant
Filed:
January 11, 2018
Date of Patent:
December 3, 2019
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Dumitru Puiu, Vijay A. Neelakantan, Gurdeep Singh, Ryan M. Jenness
Abstract: A system for in-vehicle network intrusion detection includes: (i) an anomaly detection module configured to obtain one or more network messages from one or more communication buses of a vehicle describing one or more events associated with the vehicle and detect whether at least some of the one or more events constitute an anomaly based on predefined rules to provide detected anomaly event data; (ii) a resident log generation module configured to generate one or more resident incident logs based on the detected anomaly event data, wherein the one or more resident incident logs comprise metadata associated with one or more detected anomalous events; and (iii) a transmitted log generation module configured to generate one or more transmitted incident logs based on the one or more resident incident logs, wherein each of the one or more transmitted incident logs corresponds to a resident incident log.
Type:
Grant
Filed:
September 11, 2017
Date of Patent:
December 3, 2019
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Samuel B. Kupfer, Joseph E. Ploucha, Abigail C. Shockley
Abstract: A method of controlling a slew rate of a MOSFET connected to a battery for supplying an electrical current to an electrical load is provided. A state transition of the MOSFET is provided and a drain-source voltage of the MOSFET is monitored. A variable current is provided through a gate of the MOSFET. A constant current is provided through the gate of the MOSFET, when the drain-source voltage of the MOSFET satisfies a predefined condition that is a function of a battery voltage.
Abstract: Methods and systems are provided for adjusting a position of a sensing device relative to a vehicle. In one embodiment, a system includes the sensing device configured to provide sensor data associated with an environment of the vehicle. The system further includes an adjustable sensor mount that mounts the sensing device to the vehicle. The system further includes a control module configured to process the sensor data to a representation of the environment of the vehicle, to process the representation to determine an obstruction within a field of view of the sensing device, to determine a location of the obstruction, and to control the adjustable sensor mount to a desired position based on the location.
Abstract: Systems are provided for radiant heating by a window shade. A window shade system for a window of an enclosed space includes a window shade configured to cover at least a portion of the window. A radiant heating fabric extends over at least a portion of the window shade. A power supply supplies electric current to the radiant heating fabric.
Abstract: In various embodiments, methods, systems, and vehicles are provided for distance determinations using cameras from different vehicles. The system includes a first camera onboard a first vehicle, providing a first image, the first image having therein an object of interest (OOI) for which a distance from the first vehicle is desired; and a second camera, providing second camera data including a second image having therein the OOI. The system further includes a control module configured to process and time synchronize first camera data and second camera data to generate a distance determination for the OOI, using the first camera data, the second camera data, and a distance between the first and second camera.
Type:
Application
Filed:
May 24, 2018
Publication date:
November 28, 2019
Applicant:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Mohannad Murad, Fan Bai, Joseph G. Machak