Abstract: A cellular radio architecture for a vehicle that includes a triplexer coupled to an antenna structure and including three signal paths, where each signal path includes a bandpass filter that passes a different frequency band than the other bandpass filters and a circulator that provides signal isolation between the transmit signals and the receive signals. The architecture also includes a receiver module having a separate signal channel for each of the signal paths in the triplexer, where each signal channel in the receiver module includes a receiver delta-sigma modulator that converts analog receive signals to a representative digital signal. The delta-sigma modulator includes an LC filter having a plurality of LC resonator circuits, a plurality of transconductance amplifiers and a plurality of integrator circuits, where a combination of one resonator circuit, transconductance amplifier and integrator circuit represents a two-order stage of the LC filter.
Type:
Grant
Filed:
June 19, 2015
Date of Patent:
August 1, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Timothy J. Talty, Andrew J. MacDonald, Cynthia D. Baringer, Mohiuddin Ahmed, Albert E. Cosand, James Chingwei Li, Peter Petre, Zhiwei A. Xu, Yen-Cheng Kuan
Abstract: An airflow outlet assembly and a passenger compartment for a vehicle includes a housing defining an aperture extending along a central axis. The housing includes a central support disposed in the aperture proximal to the central axis. First and second outlet components are at least partially disposed in the aperture of the housing. The first outlet component includes a first plate and a first vane extending outwardly from the first plate toward the central axis. The second outlet component includes a second plate and a second vane extending outwardly from the second plate toward the central axis. The first and second outlet components are rotatable concurrently with each other to change the position of the first and second plates and the first and second vanes relative to the housing such that the first and second plates selectively close and open the aperture.
Abstract: A coolant control system of a vehicle includes a coolant valve control module and a pump control module. The coolant valve control module determines a position of a coolant valve. The pump control module determines a speed of a coolant pump based on the position of the coolant valve and a desired coolant output temperature, measures a coolant output temperature, determines a difference between the desired coolant output temperature and the measured coolant output temperature, generates a correction factor based on the difference between the desired coolant output temperature and the measured coolant output temperature, and applies the correction factor to the speed of the coolant pump.
Type:
Grant
Filed:
January 9, 2015
Date of Patent:
August 1, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan
Abstract: An energy absorber according to various embodiments can include a structure having a predetermined cross-sectional profile. A hollow profile is formed within the structure. The pre-determined cross-sectional profile of the structure is configured based on a deceleration-time profile that includes a first period and a second period. The first period is defined by a substantially sharp and linear increase in magnitude of the deceleration of an impact until a maximum deceleration value is achieved. The second period is defined by a rapid decrease in the magnitude of the deceleration.
Type:
Grant
Filed:
January 21, 2015
Date of Patent:
August 1, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Louis G. Hector, Jr., Anil K. Sachdev, Jeff Wang, Hanif Muhammad, Nilesh D. Mankame
Abstract: A method is disclosed for improving fuel economy in an internal combustion engine. The method may involve sensing a temperature of an engine block and determining a block thermal energy representing an ability of the block to reject heat. An open loop control scheme may be used together with the block thermal energy to predict if a coolant in the block is about to enter a boiling condition and, when this is about to occur, to open a block valve to permit a flow of coolant through the block. A closed loop control scheme may be used together with the sensed temperature of the block to determine if a coolant boiling condition is about to occur, and to control the block valve to permit a flow of coolant through the block which is just sufficient to prevent the onset of coolant boiling in the block.
Type:
Grant
Filed:
October 3, 2014
Date of Patent:
August 1, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Eugene V. Gonze, Yue-Ming Chen, Vijay Ramappan, Ben W. Moscherosch
Abstract: A system according to the principles of the present disclosure includes an engine start module and an exhaust throttle valve control module. The engine start module determines when an engine is started based on at least one of an input from an ignition system and the speed of the engine. The exhaust throttle valve control module selectively fully closes an exhaust throttle valve in an exhaust system of the engine when the engine is started to trap exhaust gas in the exhaust system.
Abstract: Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges. The corrugated designs provide support structures that are impact resistant.
Type:
Application
Filed:
April 6, 2017
Publication date:
July 27, 2017
Applicants:
GM Global Technology Operations LLC, Teijin Limited
Inventors:
John N. Owens, Mark A. Voss, Bhavesh Shah, Venkat Aitharaju, Chris James Tadeusz Wisniewski, Yutaka Yagi, Tsukasa Arai
Abstract: Methods of making high-strength, lightweight alloy components capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si. Materials and components, such as automotive components, made from such methods are also provided.
Abstract: A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.
Type:
Grant
Filed:
July 28, 2011
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Min Sun, Kevin L. Perry, Donovan L. Dibble, Chang H. Kim, Mary Beth Furness
Abstract: An engine control system for a vehicle may include a sequence determination module that generates a first set of possible MPC target values and a second set of possible MPC target values. A cost module determines a first cost for the first set of possible MPC target values and a second cost for the second set of possible MPC target values. A selection module that selects MPC target values from one of the first and second sets of possible MPC target values based on the first and second costs. A transition module that receives the MPC target values, compares the MPC target values with a plurality of previous control requests, and selects a set of target values ranging from the previous control requests to the MPC target values that control a plurality of engine functions.
Type:
Grant
Filed:
March 26, 2014
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Ning Jin, Christopher E. Whitney, Jyh-Shin Chen, Kevin C. Wong
Abstract: An exhaust gas assembly includes an exhaust gas tube configured to receive an exhaust gas from the internal combustion engine, which includes at least one cylinder. An oxidation catalytic device may be operatively connected to the exhaust gas tube and includes a catalyst. A first temperature sensor is operatively connected to the oxidation catalytic device. A controller is operatively connected to the first temperature sensor. A hydrocarbon injector is operatively connected to the controller and configured to selectively inject an amount of hydrocarbon at a hydrocarbon injection rate. The controller includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method of controlling the hydrocarbon injection rate. The controller may be programmed to limit the hydrocarbon injection rate based at least partially on a combination of space velocity, temperature of the catalyst in the oxidation catalytic device and temperature of a particulate filter.
Type:
Grant
Filed:
January 21, 2016
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Charles E. Dean, Andrea Hidalgo, Michelangelo Ardanese
Abstract: A system is configured to control aerodynamics of a vehicle. The vehicle includes a vehicle body having a front end facing an ambient airflow when the vehicle is in motion relative to a road surface. The system includes an adjustable aerodynamic-aid element mounted to the vehicle body. The system also includes a mechanism configured to vary a position of the adjustable aerodynamic-aid element relative to the vehicle body and thereby control movement of the airflow. The system additionally includes a sensor configured to detect a height of the vehicle body relative to a predetermined reference frame and a controller configured to receive a signal from the sensor indicative of the detected vehicle body height. The controller is also configured to determine a ride-height of the vehicle using the detected vehicle body height and to regulate the mechanism in response to the determined ride-height to control aerodynamics of the vehicle.
Type:
Grant
Filed:
May 24, 2016
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Kevin Irwin, Edward T. Heil, Jason D. Fahland, Joshua R. Auden, Steven A. Opiteck, David Dominguez, Chris Morgan
Abstract: A method and system for controlling one or more contactors of a rechargeable energy storage system (RESS) includes adjusting, via a controller, the respective actuating power provided to a respective one or more of the contactors, where adjusting of the actuating power is defined by the energized or non-energized condition of the vehicle and at least one parameter affecting holding and opening forces exerted on the respective contactor. In an example, the controller is configured to use feed forward factors defined by the at least one parameter and to adjust the dynamic actuating current by modulating the dynamic actuating current at a pulse width modulation (PWM) frequency defined by a feed forward window. The system may be configured as a plug-in electric vehicle including the rechargeable energy storage system and the controller.
Type:
Grant
Filed:
March 17, 2015
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Yue Fan, Andrew J. Namou, Andres V. Mituta
Abstract: A pulley for a continuously variable transmission and a method of creating an engineered surface on an outer surface of a pulley of a continuously variable transmission, with the engineered surface engaging with a belt or chain of the continuously variable transmission. The method comprising the steps of: determining an actual engineered roughness (Rpk) on the outer surface needed to obtain a predetermined friction between the engineered surface and the belt or chain; and etching microgrooves in at least a portion of the outer surface to create the engineered surface by employing a laser to etch the microgrooves, the microgrooves being formed to a depth that produces the actual engineered roughness (Rpk).
Type:
Grant
Filed:
October 7, 2010
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Roger L. Briggs, Martin S. Kramer, Ronald P. Buffa, Matthew P. Werner
Abstract: A method for locating a first vehicle component relative to a second vehicle component includes the following steps: (a) moving the robotic arm to a first position such that a form feature of the first vehicle component is within a field of view of a camera; (b) capturing an image the form feature of the first vehicle component; (c) moving the robotic arm to a second position such that the form feature of the second vehicle component is within the field of view of the camera; (d) capturing an image of the form feature of the second vehicle component; (e) picking up the second vehicle component using the robotic arm; and (f) moving the robotic arm along with the second vehicle component toward the first vehicle component.
Type:
Grant
Filed:
May 19, 2015
Date of Patent:
July 25, 2017
Assignee:
GM Global Technology Operations LLC
Inventors:
Jianying Shi, John Patrick Spicer, Lance T. Ransom