Patents Assigned to GM
-
Patent number: 11175667Abstract: A vehicle, system and method of operating a vehicle. A sensor for measures a dynamic variable of the vehicle. A processor determines a location of a perceived yaw center (PYC) of the vehicle from the dynamic variable, tracks a desired location of the PYC, and adjusts a control parameter of the vehicle to reduce a difference between the location of the PYC and the desired location of the PYC.Type: GrantFiled: February 19, 2020Date of Patent: November 16, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: SeyedAlireza Kasaiezadeh Mahabadi, Seyedeh Asal Nahidi, Michael W. Neal, James H. Holbrook, Hualin Tan, Bakhtiar B. Litkouhi
-
Patent number: 11175171Abstract: A method is used to control a fuel level gauge of a vehicle system and includes: monitoring, via an engine controller, a fuel economy of the vehicle system; comparing, via the engine controller, the fuel economy with a predetermined fuel economy threshold to determine whether the fuel economy is less than the predetermined fuel economy threshold; adjusting, via the engine controller, a sensitivity of a display filter in response to determining that the fuel economy is less than the predetermined fuel economy threshold for a predetermined amount of time in order to maximize an accuracy of the fuel level gauge, wherein the display filter smoothes an unfiltered fuel level signal received from a fuel level sensor of the vehicle system, thereby generating a filtered fuel level signal; and controlling, via an instrument panel controller, the fuel level gauge of the vehicle system.Type: GrantFiled: October 2, 2018Date of Patent: November 16, 2021Assignee: GM Global Technology Operations LLCInventors: Ayman A. Abbas, Michael V. Miceli, Thomas J. McDade, Jr.
-
Patent number: 11178619Abstract: In an exemplary embodiment, a vehicle includes antennas in proximity to one another; amplifiers; a computer memory; and a computer processor. The amplifiers are coupled to or part of the antennas. The computer memory stores a predetermined cases map that lists, for each of a plurality of combinations of frequencies for antennas, the predetermined cases map specifying, for each combination of frequencies, an amount of uplink RF power reduction required to reduce the degradation below a predetermined threshold. The computer processor is configured to retrieve, from the computer memory, the predetermined cases map; determine a current frequency combination for a current plurality of frequencies of the antennas of the vehicle; and provide instructions to one or more of the amplifiers to adjust a maximum RF power of one or more of the antennas, to thereby reduce receiver performance degradation between the antennas.Type: GrantFiled: October 14, 2020Date of Patent: November 16, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventor: Jang Hwan Oh
-
Patent number: 11173568Abstract: A composite metal flexplate is disclosed that includes an aluminum center plate and a steel ring gear joined to the aluminum center plate by a solid-state joint. The solid-state joint that joins together the aluminum center plate and the steel ring gear may be formed by friction welding. During the friction welding process, a surface of an annular body of the steel ring gear is preheated, followed by bringing the preheated surface of the annular body into contact with a surface of a periphery of a circular body of the aluminum center plate. The two contacting surfaces are then caused to experience relative rotational contacting movement, which generates frictional heat therebetween and softens adjacent regions of the steel ring gear and the aluminum center plate. Once this occurs, an applied force is administered to compress and forge the contacting surfaces together, thereby establishing the solid-state joint.Type: GrantFiled: July 11, 2018Date of Patent: November 16, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Daniel J. Wilson, Huaxin Li, Jianghuai Yang, James D. Cremonesi, Qigui Wang
-
Patent number: 11176703Abstract: A system uses a fleet of AVs to assess visibility of target objects. Each AV has a camera for capturing images of target objects. AVs provide the captured images, or visibility data derived from the captured images, to a remote system, which aggregates visibility data describing images captured across the fleet of AVs. The AVs also provide condition data describing conditions under which the images were captured, and the remote system aggregates the condition data. The remote system processes the aggregated visibility data and condition data to determine conditions under which a target object does not meet a visibility threshold.Type: GrantFiled: May 12, 2020Date of Patent: November 16, 2021Assignee: GM Cruise Holdings LLCInventors: Katherine Mary Stumpf, Andrew David Acosta
-
Patent number: 11175382Abstract: A vehicle, radar system of the vehicle and method of determining an elevation of an object. The radar system includes a transmitter that transmits a reference signal and a receiver that to receive at least one echo signal related to reflection of the reference signal from an object. The receiver includes an antenna array having a plurality of horizontally-spaced antenna elements. A processor determines a first uncertainty curve associated with an azimuth measurement related to the at least one echo signal, determines a second uncertainty curve associated with a Doppler measurement and a velocity measurement related to the at least one echo signal, and locates an intersection of the first uncertainty curve and the second uncertainty curve to determine the elevation of the object.Type: GrantFiled: June 14, 2019Date of Patent: November 16, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Oded Bialer, Amnon Jonas
-
Patent number: 11167269Abstract: A three-way catalyst device (TWC) includes a first catalytic brick (FCB) and a second catalytic brick (SCB) downstream from the FCB. The FCB has a first washcoat applied to a first support body including ceramic and/or metal oxide particles, Pd particles, and Rh particles, and has at most 35 g/ft3 Pd and at most 7.5 g/ft3 Rh. The SCB has a second washcoat applied to a second support body including ceramic and/or metal oxide particles, Pt particles, and Rh particles, and has a Pt loading of at most 35 g/ft3 Pt and a Rh loading of at most 7.0 g/ft3 Rh. The FCB can have 25 g/ft3 to 35 g/ft3 Pd and 5.5 g/ft3 to 7.5 g/ft3 Rh and the SCB can have 25 g/ft3 to 35 g/ft3 Pt and 5.0 g/ft3 to 7.0 g/ft3 Rh. The TWC can receive exhaust gas from an internal combustion engine powering a vehicle.Type: GrantFiled: July 14, 2020Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Gongshin Qi, Wei Li
-
Patent number: 11167759Abstract: Operating a subject vehicle equipped with an adaptive cruise control system includes setting initial states for control parameters, including setting a desired vehicle speed and determining a desired following gap range, wherein the desired following gap range is associated with a lead vehicle. Operation is controlled via the adaptive cruise control system based upon the initial states for the control parameters. Operation also includes monitoring for presence of the lead vehicle. Upon detecting presence of the lead vehicle, an actual following gap is determined between the subject vehicle and the lead vehicle, and the initial states of the control parameters associated with the adaptive cruise control system are adjusted based upon the actual following gap between the subject vehicle and the lead vehicle, and the desired following gap range. Operation is controlled via the adaptive cruise control system based upon the adjusted initial states of the control parameters.Type: GrantFiled: April 10, 2019Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Junfeng Zhao, Yiran Hu, Dongxu Li, Steven E. Muldoon, Chen-Fang Chang
-
Patent number: 11169253Abstract: A system and method using a multi-node radar system involve receiving reflected signals at each node of the multi-node radar system, the reflected signals resulting from reflection of transmitted signals by one or more objects, and generating velocity lines associated with each of the reflected signals received at each of the nodes, each velocity line being derived from a radial velocity Vr and an angle of arrival ? determined from the reflected signal received at the node. The method also includes determining one or more intersection points of the velocity lines, and estimating a velocity of each of the one or more objects based on the one or more intersection points. Each intersection point corresponds with the velocity for one of the one or more objects and the velocity is a relative velocity vector between the one of the one or more objects and the radar system.Type: GrantFiled: April 10, 2019Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: David Shapiro, Oded Bialer, Amnon Jonas
-
Patent number: 11171806Abstract: A system for transferring a frame within an Ethernet network of a vehicle. The system includes an Ethernet switch, first and second feature modules and a NAM. The Ethernet switch includes first and second ports connected respectively to the first and second feature modules. The NAM: receives a priority request message from the second feature module; generates a priority response message indicating information for the second feature module to set a priority level of a frame; and transmits the priority response message to the second feature module. The Ethernet switch: receives the frame from the second feature module at the first port, where the frame has a first bit indicative of the priority level and a second bit indicative of a port of the first feature module; and forwards the frame, based on the first and second bits, to a corresponding one of the queues having the priority level and for transmission to the port of the first feature module.Type: GrantFiled: June 26, 2020Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Michael G. Yocum, Andrew Kryszak, William R. Price, Steven Hartley, Robert H. Lake
-
Patent number: 11167737Abstract: Methods and apparatus are provided for assisted deceleration based trailer braking. The apparatus includes a trailer brake controller for applying a trailer brake in response to a brake control signal, a wheel speed sensor, an accelerometer for determining an acceleration, and a trailer controller for generating the brake control signal in response to a change in the acceleration indicating a negative value, the trailer controller further operative to couple the brake control signal to the trailer brake controller.Type: GrantFiled: April 12, 2019Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Paul Falcon, Douglas J. Spry
-
Patent number: 11167808Abstract: An alignment device includes a first body and a second body, at least one retention member flexibly coupled to the first body, and a locking member coupled to the first body. The second body has an outer surface and an inner surface defining a cylindrical wall, the cylindrical wall defining a cylindrical opening, a first retention opening extending through the cylindrical wall and a second retention opening extending through the cylindrical wall. The first body translates within the cylindrical opening of the second body and the locking member engages with the first retention opening to position the alignment device in a first position and the locking member engages with the second retention opening to position the alignment device in a second position.Type: GrantFiled: January 24, 2018Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: David T. Renke, Michael D. Richardson, James C. O'Kane
-
Patent number: 11168627Abstract: Systems and methods are provided for determining and correcting air/fuel imbalance between cylinders of an internal combustion engine. A deactivation strategy is determined and implemented. An evaluation is made of whether the engine is operating with an air/fuel imbalance between cylinders. When an imbalance is identified, an alternate deactivation strategy is implemented. Based on outcomes of the alternate deactivation strategy, a source cylinder of the air/fuel imbalance is identified, and fuel flow to the source cylinder is corrected.Type: GrantFiled: November 18, 2019Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Michael A. Smith, Dale A. Frank, Ryan J. Prescott, Manoj K. Moningi, Michael J. Lucido, Vijay Ramappan
-
Patent number: 11171571Abstract: An AC electronic solid-state switch includes an electrically insulating and thermally conductive layer, a first electrically conductive trace, a second electrically conductive trace, and a plurality of semiconductor dies each electrically connected to the first electrically conductive trace and the second electrically conductive trace. Each of the plurality of semiconductor dies forms a MOSFET, IGBT or other types of electronically controllable switch. The AC electronic solid-state switch further includes a common drain conductor that is electrically connected to each drain terminal of the plurality of semiconductor dies. The AC electronic solid-state switch is configured to block between 650 volts and 1700 volts in the off-state in a first direction and a second direction, the second direction being opposite the first direction, and the AC electronic solid-state switch is configured to carry at least 500 A continuously in the on-state with a voltage drop of less than 2V.Type: GrantFiled: November 5, 2019Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Rashmi Prasad, Chandra S. Namuduri
-
Patent number: 11167832Abstract: A watercraft includes a hull structure, a deck structure, and a propulsion system. The hull structure includes at least one hull each defining an interior. The deck structure is mounted to the hull structure. The propulsion system is adapted for moving the watercraft within a body of water, and includes an electric motor and an energy storage device coupled to the electric motor. The electric motor and the energy storage device are positioned adjacent one another within an area including at least one of the interior of the at least one hull.Type: GrantFiled: October 10, 2019Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jonathan D. Doremus, Chad Michael DuMars, Preston C. Jackson, John A. Diemer, Briana M. Mohan, Eric T. Wills, Trevor Fayer
-
Patent number: 11167749Abstract: A hybrid electric powertrain for a vehicle includes an engine, electric machine, torque converter having a pump, turbine, and torque converter clutch (“TCC”) configured, when applied, to lock the pump to the turbine, a one-way engine disconnect clutch connected to the turbine, a transmission, and a controller. A transmission input shaft directly couples to the electric machine, and is selectively coupled to the engine via the disconnect clutch. An output shaft is connectable to road wheels of the vehicle. The controller, in response to an engine-off request, determines turbine and pump speeds of the turbine and pump, respectively, registers that the engine is in an engine-off state when the pump speed is less than the turbine speed, and executes an electric vehicle (“EV”) mode shift using machine torque from the electric machine when the pump speed is zero during the engine-off state.Type: GrantFiled: January 20, 2020Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Chunhao J. Lee, Neeraj S. Shidore, Norman K. Bucknor, Dongxu Li, Farzad Samie
-
Patent number: 11168985Abstract: A vehicle pose determining system and method for accurately estimating the pose of a vehicle (i.e., the location and/or orientation of a vehicle). The system and method use a form of sensor fusion, where output from vehicle dynamics sensors (e.g., accelerometers, gyroscopes, encoders, etc.) is used with output from vehicle radar sensors to improve the accuracy of the vehicle pose data. Uncorrected vehicle pose data derived from dynamics sensor data is compensated with correction data that is derived from occupancy grids that are based on radar sensor data. The occupancy grids, which are 2D or 3D mathematical objects that are somewhat like radar-based maps, must correspond to the same geographic location. The system and method use mathematical techniques (e.g., cost functions) to rotate and shift multiple occupancy grids until a best fit solution is determined, and the best fit solution is then used to derive the correction data that, in turn, improves the accuracy of the vehicle pose data.Type: GrantFiled: April 1, 2019Date of Patent: November 9, 2021Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Michael Slutsky, Daniel I. Dobkin
-
Patent number: 11171365Abstract: A capacitor-assisted, solid-state lithium-ion battery is formed by replacing at least one of the electrodes of the battery with a capacitor electrode of suitable particulate composition for the replaced battery particulate anode or cathode material. The solid-state electrodes typically contain quasi-solid-state electrode material and are separated with a layer of quasi-solid-state electrolyte material. In another embodiment the capacitor anode or cathode particles may be mixed with lithium-ion battery anode or cathode particles respectively. Preferably, the battery comprises at least two positively-charged electrodes and two negatively-charged electrodes, and the location, number and compositions of the capacitor material electrode(s) may be selected to provide a desired combination of energy and power.Type: GrantFiled: April 22, 2019Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Zhe Li, Dave G. Rich, Haijing Liu, Dewen Kong, Sherman H. Zeng
-
Patent number: 11171330Abstract: A method of forming batteries includes feeding a foil through a coating machine. The movement of the foil defines a foil direction. The method applies a first coating band and a second coating band to the foil. The second coating band is spaced from the first coating band by a first tab gap. The foil is cut substantially perpendicular to the foil direction to separate a first coated blank. The first coated blank is cut separate the first coating band and a first portion of the first tab gap, and to separate the second coating band and a second portion of the first tab gap. A first electrode is formed from the first coating band and the first portion of the first tab gap, and a second electrode is formed from the second coating band and the second portion of the first tab gap.Type: GrantFiled: August 1, 2019Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Chih-Cheng Hsu, Sherman H. Zeng
-
Patent number: 11171385Abstract: A method of forming a separator for a lithium-ion battery includes arranging a polymer film in contact with a sacrificial layer to form a cutting stack. The method includes disposing the cutting stack between a first vitreous substrate and a second vitreous substrate. The method includes applying an infrared laser to the cutting stack through the first vitreous substrate to generate heat at the sacrificial layer. The method also includes transferring heat from the sacrificial layer to the polymer film to thereby cut out a portion of the polymer film and form the separator. A method of cutting a polymer film and a cutting system are also explained.Type: GrantFiled: July 12, 2018Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Hongliang Wang, Brian J. Koch, Michael P. Balogh, Sean R. Wagner