Patents Assigned to Haemonetics Corporation
  • Publication number: 20190307941
    Abstract: A tubing set for a blood processing system includes a first connector, a first tube, and a second tube. The first connector is configured to connect to a separation device within the blood processing system, and has a first inlet configured to be fluidly connected to an outlet of the separation device. The first connector also has an outlet and a second inlet. The first tube fluidly connects to the outlet and fluidly connects the separation device and a blood component storage container. The second tube is fluidly connected to the second inlet and fluidly connects the separation device and a saline storage container. The second tube may include a second connector that connects to the saline storage container.
    Type: Application
    Filed: June 14, 2017
    Publication date: October 10, 2019
    Applicant: Haemonetics Corporation
    Inventor: Christopher S. McDowell
  • Publication number: 20190151200
    Abstract: A top for a plasma storage container includes a top body that defines the structure of the top and seals an opening of the plasma storage container. The top also includes a first opening and a vent opening extending through the top body. A septum is located at least partially within the first opening and includes an aperture therethrough. The septum allows a blunt cannula to pass through the aperture to access the interior of the plasma storage container. The top also includes a hydrophobic membrane located on underside of the top body. The membrane covers the vent opening and allows air to vent through the vent opening during plasma collection.
    Type: Application
    Filed: May 16, 2017
    Publication date: May 23, 2019
    Applicant: Haemonetics Corporation
    Inventor: Christopher S. McDowell
  • Patent number: 10293097
    Abstract: A continuous flow centrifuge bowl includes a rotatable outer body, and a top and bottom core that are rotatable with the outer body. The bottom core has a wall extending proximally from a bottom wall. The proximally extending wall is radially outward from at least a portion of the top core and, together with the top core, defines a primary separation region in which initial separation of the whole blood occurs. The bowl may also have a secondary separation region located between the top core and the outer body, and a rotary seal that couples an inlet port and two outlet ports to the outer body. The inlet port may be connected to an inlet tube that extends distally into a whole blood introduction region. Additionally, one of the outlet ports may be connected to an extraction tube that extends into a region below the bottom core.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: May 21, 2019
    Assignee: Haemonetics Corporation
    Inventors: Matthew Murphy, Dominique Uhlmann, Edward Powers, Michael Ragusa, Etienne Pagès
  • Patent number: 10228310
    Abstract: A flow through fluid sampling system includes a sample tube and a cap. The sample tube is configured to collect a sample of a fluid and has an open top. The cap is configured to be secured to the sample tube to close the open top. The cap includes an inflow port configured to allow fluid to enter the fluid sample tube, an outflow port configured to allow fluid to leave the sample tube.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 12, 2019
    Assignee: Haemonetics Corporation
    Inventors: Michael Ragusa, Matthew J. Murphy
  • Patent number: 10155083
    Abstract: A centrifuge bowl for separating whole blood into blood components includes a rotatable body, and inlet, and a plurality of vibration reduction members. The rotatable body has a body portion and a neck portion. The body portion defines an interior for receiving whole blood, and the body is rotatable to separate the whole blood into a plurality of blood components. The inlet is in fluid communication with the interior of the rotatable body, and is configured to introduce the whole blood into the rotatable body. The plurality of vibration reduction members are spaced about the neck portion, and are configured to reduce vibration of the centrifuge bowl as the bowl is rotated.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: December 18, 2018
    Assignee: Haemonetics Corporation
    Inventors: Bruce Brunner, Christopher J. Caputo
  • Publication number: 20180202881
    Abstract: An apparatus for measuring pressure within a fluid path includes a housing defining the structure of the apparatus. The housing includes a fluid path that extends through the housing and allows a fluid to pass through the housing. The apparatus also includes a first volume chamber that is in fluid communication with the fluid path and has a first volume chamber opening, and a second volume chamber with a second volume chamber opening that is less than the first volume chamber opening. A diaphragm separates the first volume chamber from the second volume chamber and fluidly disconnects the second volume chamber from the fluid path. The diaphragm deforms based upon the pressure within the fluid path. The apparatus also includes an interface that is connectable to a pressure sensor, and the second volume chamber is in fluid communication with the interface.
    Type: Application
    Filed: July 20, 2016
    Publication date: July 19, 2018
    Applicant: Haemonetics Corporation
    Inventors: Ming Lei, Matthew Murphy
  • Patent number: 9928457
    Abstract: A method for securing an RFID tag to an object includes providing an RFID tag and placing the RFID tag on the object. The RFID tag has an RFID chip and an antenna electrically connected to the RFID chip. The RFID tag also has a first and second opening extending through the RFID tag. The object has a first and second protrusion extending from a surface of the object. The first and second protrusions extend through the first and second openings when the RFID tag is placed on the object. The method also includes melting the first and second protrusions to create a single integral boss that covers at least a portion of the RFID tag and secures the RFID tag to the object. The chip may be nonfunctional prior to the securement process.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: March 27, 2018
    Assignee: Haemonetics Corporation
    Inventor: Christopher S. McDowell
  • Patent number: 9833794
    Abstract: A method for washing platelets includes introducing anticoagulant into a platelet product container, drawing re-anticoagulated platelet product from the platelet product container, and introducing it into a centrifuge bowl. The centrifuge bowl separates the platelets from the supernatant in which they are suspended. The method then washes the platelets by introducing wash solution into the centrifuge bowl. As the wash solution is introduced into the bowl, it displaces the supernatant from the bowl and into a waste container. The method then introduces platelet additive solution into the centrifuge bowl, which displaces the wash solution from the centrifuge bowl and into the waste container and further wash the platelets. The method then repeatedly accelerates and decelerates the centrifuge bowl to resuspend the platelets in the platelet additive solution.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: December 5, 2017
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pagès, Dominique Uhlmann, Matthew Murphy
  • Patent number: 9789243
    Abstract: A method for the re-anticoagulation of platelet rich plasma in a blood apheresis system includes priming the blood apheresis system with anticoagulant, such that a volume of anticoagulant is transferred to a PRP container. The method may then transfer the anticoagulant within the PRP container to a red blood cell container, and collect a volume of platelet rich plasma within the PRP container. The platelet rich plasma may be collected in a plurality of cycles. Between collection cycles, the method may transfer a portion of the volume of anticoagulant from the red blood cell container to the PRP container.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: October 17, 2017
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pagès, Michael Ragusa
  • Patent number: 9682185
    Abstract: A centrifuge bowl for separating whole blood into blood components includes a rotatable body, and inlet, and a plurality of vibration reduction members. The rotatable body has a body portion and a neck portion. The body portion defines an interior for receiving whole blood, and the body is rotatable to separate the whole blood into a plurality of blood components. The inlet is in fluid communication with the interior of the rotatable body, and is configured to introduce the whole blood into the rotatable body. The plurality of vibration reduction members are spaced about the neck portion, and are configured to reduce vibration of the centrifuge bowl as the bowl is rotated.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: June 20, 2017
    Assignee: Haemonetics Corporation
    Inventors: Bruce Brunner, Christopher J. Caputo
  • Patent number: 9626620
    Abstract: A frangible RFID tag includes a substrate having at least one weakened area, an RFID chip and an antenna. The RFID chip and the antenna are located on the substrate and the antenna is electrically connected to the RFID chip. The RFID tag also includes a plurality of adhesive areas applied to the underside of the substrate. The adhesive areas allow the RFID tag to be secured to an object. The adhesive areas may be spaced from one another to form at least one gap between the adhesive areas. The gap(s) may be located under the at least one weakened area.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: April 18, 2017
    Assignee: Haemonetics Corporation
    Inventor: Christopher S. McDowell
  • Patent number: 9539374
    Abstract: A donated blood collection kit includes an easy-to-open closed container. Stored within the container are items necessary or useful for collecting donated blood, such as an antiseptic scrub, an antiseptic swab, test tubes, a blood collection container, a gauze pad and a sheet of pre-printed adhesive barcode labels. Each kit is assigned a unique identification when the kit is manufactured. The identification may eventually be used as the unique donor identification for a unit of donated blood that is collected using the items in the kit. The container is pre-labeled with the unique identification, such as by a barcode or an RF-ID tag. The test tubes and, if included, the blood collection container are pre-labeled with the same unique donor identification.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: January 10, 2017
    Assignee: Haemonetics Corporation
    Inventors: Lise N. Halpern, Tim Costello, Jonathan White
  • Patent number: 9522350
    Abstract: A method for the simultaneous concentration of multiple toxins from large volumes of water. The method includes the steps of providing a disposable separation centrifuge bowl, the centrifuge bowl including a positively charged material at it's inner core. A large water sample contaminated with toxins from a group consisting of protozoa, bacteria, bacterial spores, and toxins is delivered to the centrifuge bowl. A centrifugal force is applied to the separation bowl. The water sample is concentrated to remove large particles of the toxins in the bowl due to the centrifugal forces. The concentrated water sample is passes through the positively charged inner core to capture any remaining concentrated targets by electrostatic forces and the concentrated targets are eluted.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 20, 2016
    Assignees: Trustees of Tufts College, Haemonetics Corporation
    Inventors: Saul Tzipori, Udi Zukerman, Gary Stacey
  • Publication number: 20160334307
    Abstract: A flow through fluid sampling system includes a sample tube and a cap. The sample tube is configured to collect a sample of a fluid and has an open top. The cap is configured to be secured to the sample tube to close the open top. The cap includes an inflow port configured to allow fluid to enter the fluid sample tube, an outflow port configured to allow fluid to leave the sample tube.
    Type: Application
    Filed: January 12, 2015
    Publication date: November 17, 2016
    Applicant: Haemonetics Corporation
    Inventors: Michael Ragusa, Matthew Murphy
  • Patent number: 9370615
    Abstract: An apparatus for separating whole blood includes an access device for drawing whole blood from a source, a blood component separation device, a draw line, a draw pump, and a controller. The blood component separation device separates the drawn whole blood into a first blood component and a second blood component. The draw line fluidly connects the access device and the blood component separation device, and the draw pump draws whole blood from the source through the access device and draw line and into the blood component separation device. The controller controls fluid flow through the apparatus and operation of the draw pump. The controller also monitors the total volume of whole blood drawn from the source and the total volume of first blood component collected. The controller stops the draw pump when the first of a target whole blood volume is withdrawn or a target volume of first blood component is collected.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: June 21, 2016
    Assignee: Haemonetics Corporation
    Inventors: Michael Ragusa, Shiven Ruparel, Dominique Uhlmann
  • Patent number: 9364600
    Abstract: A blood processing device includes a venous-access device, a blood component separation device, a return line, a draw line, a first pressure sensor, a second pressure sensor, and a first pump. The first pressure sensor is located on the return line between the blood component separation device and the venous-access device, and determines a first pressure. The second pressure sensor is located on the draw line between the blood component separation device and the venous-access device, and determines a second pressure. The first pump is connected to at least one of the return line and the draw line and controls a flow rate within the connected line based on a subject access pressure determined based upon the first and second pressures.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: June 14, 2016
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pagès, Michael Ragusa
  • Patent number: 9354243
    Abstract: In some embodiments, the invention provides methods for detecting fibrinolysis or hyperfibrinolysis in a blood sample from a patient. The method includes subjecting a first portion of a blood sample comprising reduced platelet function to viscoelastic analysis in the absence of an inhibitor of fibrinolysis to obtain a coagulation characteristic of the first portion at a time point; and subjecting a second portion of the blood sample comprising reduced platelet function to viscoelastic analysis in the presence of an inhibitor of fibrinolysis to obtain a coagulation characteristic of the second portion at the time point; wherein a difference between the coagulation characteristic of the first portion and the coagulation characteristic of the second portion indicates fibrinolysis or hyperfibrinolysis in the blood sample.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 31, 2016
    Assignees: Haemonetics Corporation, The Regents of the University of Colorado, a body corporate
    Inventors: Michael P. Chapman, Ernest E. Moore, Katherine M. Norem
  • Patent number: 9302041
    Abstract: A blood-donation system and methods of usage are disclosed. The system includes a blood-donating chair configured to interoperate with various blood-processing apparatuses. The system further combines into a self-contained system all devices, communications pathways and power supplies for various powered devices employed during a blood-collecting session. The system may further interoperate with other blood-donation systems allowing for continuous monitoring of multiple blood-collecting sessions at a single user interface. According to another embodiment, in addition to interoperability, the system is further configured for upgradability, in which, various donor-station devices may be mounted and remounted.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 5, 2016
    Assignee: Haemonetics Corporation
    Inventor: Gary R. Stacey
  • Patent number: 9302042
    Abstract: A blood processing system for collecting plasma reduced platelets and anticipating plasma return includes a venous access device, a blood component separation device, a first return line, a recirculation line, and a second return line. The venous access device draws whole blood from a subject and returns blood components to the subject using a first pump. The blood component separation device separates the drawn blood into a first blood component and a second blood component, and sends the first blood component to a first blood component bag. The first return line fluidly connects the venous-access device and the blood component separation device. The recirculation line connects the first blood component container and the separation device. The second return line fluidly connects the first blood component container and the first return line and is configured to return the first blood component within the first blood container to the subject.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: April 5, 2016
    Assignee: Haemonetics Corporation
    Inventor: Etienne Pagès
  • Patent number: D754859
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 26, 2016
    Assignee: Haemonetics Corporation
    Inventors: Robert Gonsalves, Gary Stacey, Robert Lancelot, Ebenezer Y. Degbor, Paul McGovern, Jessica Connolly, André Buechner, Edward Kaleskas, Howard Sumner, Gary F. Prokop, Daniel R. Johnson, Christopher Newell