Abstract: In the present invention, a display device is provided. The display device includes a substrate, an insulating layer formed on the substrate, a first electrode, a second electrode, a data line, a common line and a common electrode formed on the insulating layer, wherein the common line is substantially parallel with the data line.
Abstract: The present invention builds a metal electrode that is controlled by the common electrode in each pixel cell. During operation, a voltage is first applied to this metal electrode to transform the liquid crystal molecule over this metal electrode from the splay state into the bend state. Next, a voltage is applied to the pixel electrode to transform the liquid crystal molecule in the whole pixel region from the splay state into the bend state. Two different voltage field also can be respectively applied to the common electrode and the pixel electrode.
Abstract: A light source device includes a housing, a reflecting plate, at least one lamp support member and a plurality of lamps. The housing has a substantially flat bottom plate. The reflecting plate is disposed on the bottom plate of the housing. The lamp support member is disposed on the reflecting plate for forming an opening. The lamps are disposed in the opening and directly mounted by the lamp support member.
Abstract: In the present invention, a method for manufacturing a liquid crystal display is provided. The method includes steps of providing a substrate, forming a first metal layer on the substrate, etching the first metal layer to form a plurality of gate lines on the substrate, forming a common electrode on the substrate, forming a second metal layer on the substrate, etching the second metal layer to form a first electrode, a second electrode, a common line and a plurality of data lines on the substrate, and forming a pixel electrode overlapping the common electrode, wherein the gate lines intersect the data lines to form at least one enclosed area, the common electrode and the pixel electrode are positioned in the enclosed area, the first electrode is connected to the pixel electrode and the second electrode is connected to the data lines.
Abstract: A polarized light source, has an illuminant for generating light having a transparent tube which is filled with mercury vapor and which has a fluorescent material disposed thereon; a reflective film surrounding the illuminant and having an opening for emitting the light; and a plurality of metal grid wires disposed at the opening for transmitting the light with a predetermined polarization therethrough; wherein the reflective film and the metal grid wires are disposed on the transparent tube.
Abstract: An automatic guided system transfers scrap glass resulted from at least one scrap glass source of a clean room to a scrap exit. The automatic guided system for transferring the scrap glass includes a rail module and a vehicle module. The rail module connects the scrap exit to the scrap glass source. The vehicle module is moved along the rail module for transferring the scrap glass from the scrap glass source to the scrap exit.
Abstract: A method of repairing an LCD panel having a mura defect is disclosed. The closed seal pattern of the LCD panel has a shape of frame with at least one jut portion directing to a peripheral side of the two substrates. Thus, when a mura defect occurs, a peripheral portion on one side of the two substrates is cut off, wherein the cutting passes across the jut portion of the closed seal pattern to form an opening with respect to the sealed region. An extra amount of liquid crystal can be pressed out through the opening. Then the opening is sealed using a sealant, such that the LCD panel having a mura defect is repaired.
Abstract: A clamp structure of an external electrode lamp includes a first fixing device, a second fixing device, and a metal strip. The first fixing device has a first indentation and the second fixing device has a second indentation for clamping an electrode of the external electrode lamp. In addition, the metal strip is located between the first and second fixing devices to contact the electrode of the external electrode lamp for providing power. The electrode can be further equipped with a cushion for fixing the electrode onto the first and second fixing devices.
Abstract: A method of manufacturing an ODF (one drop fill) LCD panel. A first substrate with a black matrix and a second substrate opposite thereto are provided. A first sealant area is formed on a peripheral region of the first substrate or the second substrate. The first sealant area is separated from the black matrix area by a space in a range of from 0 to 10 mm. The first sealant area is cured by applying a curing light from a side of the first substrate and through the first substrate to harden the first sealant area without light shielding resulting from the black matrix area.
Abstract: A dynamic gamma control method for an LCD is provided in the present invention. The LCD displays a present frame by a plurality of gamma reference voltages and the present frame includes an R-pixel data sum, a G-pixel data sum and a B-pixel data sum which are obtained by respectively adding all R-pixel data, all G-pixel data and all B-pixel data of at least one pixel of the present frame. The method includes steps of: weighting the R-pixel data sum, the G-pixel data sum and the B-pixel data sum with a first, a second and a third parameters respectively and adding them up to obtain a gamma indication value, and choosing a suitable one from the plurality of gamma reference voltages to display the present frame thereby if the gamma indication value is equal to a gamma reference value formed by adding the first, the second and the third parameters up.
Abstract: A polarized light source device comprises a light source, a reflector, a transparent substrate, an antireflection layer, and a plurality of metal grid wires. The reflector surrounds the light source for reflecting the light, and has an opening for emitting the light. The transparent substrate is disposed at the opening. The antireflection layer is disposed on the transparent substrate. The metal grid wires are disposed on the antireflection layer for transmitting the light with a predetermined polarization therethrough.
Abstract: A method of fabricating an X-ray detector array element. A gate and a gate insulation layer are formed on a substrate. A silicon island is formed on the insulation layer in a transistor area. A common line is formed on the insulation layer, simultaneously; source and drain are formed on the island to form a TFT. A bottom electrode is formed on the insulation layer in a capacitor area and covers the common line. A passivation layer is formed on the insulation layer, the bottom electrode and the TFT. A first via hole penetrates the passivation layer to expose the source. A planarization layer is formed on the passivation layer and fills the first via hole. Second and third via holes penetrate the planarization layer. The second via hole exposes the source. The third via hole exposes part of the passivation layer. A top electrode is formed on the planarization layer and connects the source.
Abstract: A repairing method of a liquid crystal display panel having a gravity defect includes steps of removing the sealant outside the liquid crystal injection hole and providing a first pressure to the liquid crystal display panel. Next, a second pressure is continuously provided to the liquid crystal display panel, and the sealant in the liquid crystal injection hole is removed. Then, a third pressure is continuously provided to the liquid crystal display panel for pressing the liquid crystal out through the injection hole, and the flowed liquid crystal is cleaned out. After that, the liquid crystal injection hole is sealed with a fresh sealant and a fourth pressure is continuously provided to the liquid crystal display panel. Finally, the fresh sealant is cured and the fourth pressure is removed.
Abstract: A pixel structure and repair method thereof. A through hole is formed in the common line. When the source/drain electrode of a thin film transistor is not electrically connected to a pixel electrode due to a polymer residue remaining in a contact hole, a first laser beam passes through the through hole to weld the source/drain electrode and the pixel electrode. The defective pixel can be thus repaired to display the original color. In addition, if the defective pixel fails due to a defective thin film transistor, the invention irradiates a second laser beam to sever the source/drain electrode such that the defective thin film transistor is not electrically connected to the pixel electrode. The defective pixel can be thus repaired to a dark point.
Type:
Grant
Filed:
October 21, 2004
Date of Patent:
August 7, 2007
Assignee:
Hannstar Display Corp.
Inventors:
Seok-Lyul Lee, Tean-Sen Jen, Ming-Tien Lin
Abstract: A method and apparatus for gray level dynamic switching. The method is applied to driving a display with at least one pixel. In the method of the present invention, a gray level sequence SG is provided. SG sequentially represents two or more desired gray levels Go(1), . . . , Go(T) of the pixel at consecutive time frames 1, . . . , T and comprises a current gray level Go(t) and a previous gray level Go(t?1) corresponding to time frames t and t?1, respectively. Then, the pixel is driven with an optimized driving force Vd(t) to change the pixel forward to a state corresponding to Go(t) according to Go(t) and Go(t?1). In the present invention, the optimized driving voltage Vd(t) is determined by equations of Vd(t)=Vo(t?1)+ODV and Vd(t)=a×Gd(m)3+b×Gd(m)2+c×Gd(m)+d, wherein the voltage ODV is a minimum voltage capable of obtaining one gray level transition in a determined response time.
Abstract: A method of processing signals of a timing controller of a liquid crystal display module, wherein the signals are processed according to a rising edge or a falling edge of a synchronizing signal to generate the control signals for the liquid crystal display module, the control signals including start vertical signals STV (including STV1 and STV2) and gate-on enable signals OE. Then, the gate clock signal CPV, STV1, STV2, and OE pause to be outputted.
Type:
Grant
Filed:
May 23, 2001
Date of Patent:
May 29, 2007
Assignee:
Hannstar Display Corp.
Inventors:
Feng-Ting Pai, Chuan-Ying Wang, Chih-Wei Wang
Abstract: An antistatic transport package for LCD cells. A case includes a body and a cover with cushioning members mounted on the inner surfaces thereof. Protective film surrounds the LCD cells in the case. The antistatic transport package also uses replaceable film in the body, enclosing the protective film and the LCD cells, preventing contamination.
Abstract: A liquid crystal display device has a pixel electrode layer formed between a first data bus line and a second bus line. A first space between the first data bus line and the periphery of the pixel electrode layer is different from a second space between the second data bus line and the periphery of the pixel electrode layer.
Type:
Grant
Filed:
July 17, 2003
Date of Patent:
May 1, 2007
Assignee:
Hannstar Display Corp.
Inventors:
Deuk-Su Lee, Jeremy Park, Ming-Tien Lin
Abstract: A TFT-LCD having a first glass substrate provided for fabricating transistors, a second glass substrate provided for fabricating a color filter, and a liquid crystal layer interposed between the second and first glass substrates. The TFT-LCD comprises the following components. A color filter is formed beneath the second glass substrate which has plural color filter elements and a first black matrix, wherein each grid pattern of the first black matrix is disposed to surround a color filter element. And the color filter element formed beneath the second glass substrate extends outward to surfaces of the first black matrix. A common electrode is formed beneath the color filter, wherein a part of the common electrode, the pixel units, and the first black matrix are overlapped to have a downward protruding structure. A second black matrix is formed on the first glass substrate, wherein each grid pattern of the second black matrix is disposed under inner edges of the each grid pattern of the first black matrix.