Abstract: An automatic feed oven for material processing (1) comprising an insulated heating chamber (4), the heating chamber having the product discharge outlet (21) and a material inlet (39), a heating source (14) operatively arranged to heat the heating chamber, a chamber feed mechanism (40) operatively arranged to feed material into the chamber through the material inlet, the chamber feed mechanism comprising a receptacle (6) operatively arranged to receive material, a linear actuator (42) operatively arranged to move the receptacle between a fill position (55) outside the chamber and a discharge position (56) within the chamber, a rotational actuator (43) operatively arranged to rotate the receptacle between a receiving position (57) and a releasing position (58), and a receptacle feed mechanism (44) operatively arranged to feed material into the receptacle when the receptacle is in the fill position.
Abstract: A lightweight airplane seat using composite material to form a four-bar linkage, pivotal at the corners to reduce torque stresses and including a frangible compressible strut to absorb the forces generated during a crash.
Abstract: A lightweight, strong article of manufacture wherein the surfaces are fabricated of an adhesive-impregnated fiber fabric having the desired properties; and where additional stiffness is required, a honeycomb material is sandwiched between the surfaces, greatly increasing the rigidity with only a slight increase in weight.
Abstract: An improved power actuated valve, particularly a ball valve, which can be manually opened or closed quickly, in the event of failure of power operation, by manual turning force applied directly to the control stem of the valve without the necessity to overcome any drag or negative torque imposed by the power operating mechanism and speed reducing transmission.
Abstract: An eccentric fastening device is provided. The eccentric fastening device includes a first threaded fastener, a base and a rotary lug providing a non-fastened pre-assembled position. The base includes a top, a bottom, a stem and a hole, where the stem axially extends from the bottom of the base, and the hole axially extends from the top through the stem of the base. The rotary lug is releasably retained in the hole of the base by the first threaded fastener. The rotary lug includes a cylindrical portion having a thread and a head, wherein the head is offset from the cylindrical portion. The cylindrical portion is substantially axially concentric with the hole of the base, allowing the head to be eccentrically rotated on or off of the stem, whereby a selective structure may be variably clamped and releasably retained between said head and said base. An aircraft having an eccentric fastening device is also provided. A method of installing the same is also provided.
Type:
Application
Filed:
March 5, 2009
Publication date:
July 2, 2009
Applicants:
THE BOEING COMPANY, HARPER ENGINEERING COMPANY
Abstract: A selectively released latch securing a panel in position, but which resists release in response to sudden movement of the panel, yet allowing release in response to a slow and steady movement of the panel.
Abstract: A resettable securement latch for a panel which allows release of the panel upon a predetermined pressure across the panel and includes means incorporating a frangible element which can be quickly restored to resecure the panel to its original position and condition.
Abstract: A vacuum sweeper includes a blower for pulling debris in a stream of air through a vacuum duct, past the blower, out a blower discharge duct and into a hopper. Debris settles to the bottom of the hopper and the air exits the hopper through a return air duct having a discharge opening. The discharge opening is positioned near a vacuum nozzle inlet of the vacuum duct such that dust and debris in the return air stream is pulled back into the vacuum duct. The air discharge opening and the return air duct are sized to be larger than the vacuum nozzle inlet. The speed of the air exiting the discharge opening is thereby reduced increasing the percentage of the return air pulled back through the vacuum nozzle inlet instead of being blown out of the vacuum chamber and into the atmosphere.