Patents Assigned to Headways Technologies, Inc.
  • Patent number: 8274165
    Abstract: A semiconductor substrate has a plurality of groove portions formed along scribe lines. The semiconductor substrate includes: insulating layers formed in the plurality of groove portions; a rectangular unit region in contact with at least any one of the plurality of groove portions; and a wiring electrode including an extended terminal portion extended from the unit region to the inside of the groove portion. The semiconductor substrate is manufactured by forming a plurality of groove portions along scribe lines; embedding an insulating material in the plurality of groove portions and planarizing a surface to form insulating layers; and forming a wiring electrode including an extended terminal portion extended from a rectangular unit region in contact with at least any one of the plurality of groove portions to the inside of the groove portion.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: September 25, 2012
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8273233
    Abstract: A method of forming a write pole in a PMR head is disclosed that involves forming an opening in a mold forming layer. A conformal Ru seed layer is formed within the opening and on a top surface. An auxiliary layer made of CoFeNi or alloys thereof is formed as a conformal layer on the seed layer. All or part of the auxiliary layer is removed in an electroplating solution by applying a (?) current or voltage during an activation step that is controlled by activation time. Thereafter, a magnetic material is electroplated with a (+) current to fill the opening and preferably has the same CoFeNi composition as the auxiliary layer. The method avoids Ru oxidation that causes poor adhesion to CoFeNi, and elevated surfactant levels that lead to write pole impurities. Voids in the plated material are significantly reduced by forming a seed layer surface with improved wettability.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: September 25, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Chao-Peng Chen, Jas Chudasama, Situan Lam, Chien-Li Lin
  • Publication number: 20120235258
    Abstract: A method of forming a high performance magnetic tunnel junction (MTJ) is disclosed wherein the tunnel barrier includes at least three metal oxide layers. The tunnel barrier stack is partially built by depositing a first metal layer, performing a natural oxidation (NOX) process, depositing a second metal layer, and performing a second NOX process to give a MOX1/MOX2 configuration. An uppermost metal layer on the MOX2 layer is not oxidized until after the MTJ stack is completely formed and an annealing process is performed to drive unreacted oxygen in the MOX1 and MOX2 layers into the uppermost metal layer. In an alternative embodiment, a plurality of metal oxide layers is formed on the MOX1 layer before the uppermost metal layer is deposited. The resulting MTJ stack has an ultralow RA around 1 ohm-?m2 and maintains a high magnetoresistive ratio characteristic of a single metal oxide tunnel barrier layer.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8270110
    Abstract: A magnetic head includes a side shield layer and an encasing layer. The side shield layer has a first end face located in the medium facing surface, a second end face opposite to the first end face, and a first groove accommodating a portion of a pole layer. The first end face includes two portions located on both sides of an end face of the pole layer that are opposite to each other in a track width direction. The encasing layer is formed of a nonmagnetic material and disposed on a side of the side shield layer opposite to a medium facing surface. The encasing layer has a front end face touching the second end face of the side shield layer, and a second groove accommodating another portion of the pole layer. The distance from the medium facing surface to an arbitrary point on the second end face of the side shield layer decreases with decreasing distance from the arbitrary point to the top surface of a substrate.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: September 18, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Hironori Araki, Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Kazuo Ishizaki, Takehiro Horinaka
  • Publication number: 20120229932
    Abstract: A magnetic layer for writing incorporates: a pole layer having an end face located in a medium facing surface and a lower yoke layer. A first magnetic layer for flux concentration is connected to the lower yoke layer at a location away from the medium facing surface, and passes a magnetic flux corresponding to a magnetic field generated by a first coil. A second magnetic layer for flux concentration is connected to the pole layer at a location away from the medium facing surface, and passes a magnetic flux corresponding to a magnetic field generated by a second coil. A nonmagnetic layer is disposed between the pole layer and the lower yoke layer. The lower yoke layer is connected to the pole layer at a location closer to the medium facing surface than the nonmagnetic layer.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Applicants: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Tatsushi Shimizu, Tatsuya Shimizu
  • Patent number: 8264792
    Abstract: A perpendicular magnetic recording (PMR) head is fabricated with a multi-level tapered write pole for efficient channeling of magnetic flux. The write pole comprises a main pole with a tapered tip on which is formed at least one yoke that has a tapered edge. The edge of the yoke is recessed from the ABS of the tapered tip, giving the write pole a stepped profile. The tapered tip can be two sloped surfaces that are symmetric about a mid-plane of the main pole or a single sloped edge on the leading side or the trailing side of the pole. The yoke structure can consist of a single yoke formed on one side of the main pole or it can consist of two yokes formed symmetrically on both the leading and trailing sides of the main pole.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Zhigang Bai, Kowang Liu, Yan Wu, Moris Dovek
  • Patent number: 8263022
    Abstract: An apparatus and methods for concentrating samples for application to microfluidic devices are disclosed. The methods involve electrophoresing charged molecules from a high volume sample into a smaller volume. The analyte of interest can be a charged molecule or can be modified to be charged using, for example, one or more ionic moieties.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: September 11, 2012
    Assignee: Headway Technologies, Inc.
    Inventor: Celine Hu
  • Publication number: 20120225321
    Abstract: A magnetic layer that may serve as a top pole layer and bottom pole layer in a magnetic write head is disclosed. The magnetic layer has a composition represented by FeWCoXNiYVZ in which w, x, y, and z are the atomic % of Fe, Co, Ni, and V, respectively, and where w is between about 60 and 85, x is between about 10 and 30, y is between 0 and about 20, z is between about 0.1 and 3, and wherein w+x+y+z=100. An electroplating process having a plating current density of 3 to 30 mA/cm2 is used to deposit the magnetic layer and involves an electrolyte solution with a small amount of VOSO4 which is the V source. The resulting magnetic layer has a magnetic saturation flux density BS greater than 1.9 Telsa and a resistivity ? higher than 70 ?ohms-cm.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Feiyue Li, Xiaomin Liu
  • Patent number: 8259420
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration where a top surface of FL1 is treated with a weak plasma etch is disclosed for achieving enhanced dR/R while maintaining low RA, and low ? in TMR or GMR sensors. The weak plasma etch removes less than about 0.2 Angstroms of FL1 and is believed to modify surface structure and possibly increase surface energy. FL1 may be CoFe, CoFe/CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb having a (+) ? value. FL2 may be CoFe, NiFe, or alloys thereof having a (?) ? value. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. When CoFeBTa is selected as insertion layer, the CoFeB:Ta ratio is from 1:1 to 4:1.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: September 4, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8256096
    Abstract: Using a beam of xenon ions together with a suitable mask, a stack is ion milled until a part of it, no more than about 0.1 microns thick, has been removed so that a pedestal having sidewalls, including a vertical section and a shortened taper portion, has been formed. This is followed by formation of conductive lead layers as needed. Using xenon as the sputtering gas enables the point at which milling is terminated to be more precisely controlled.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: September 4, 2012
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Stuart Kao, Chunping Luo, Chaopeng Chen, Takahiko Machita, Daisuke Miyauchi, Jeiwei Chang
  • Publication number: 20120218663
    Abstract: A magnetic head includes a main pole, a write shield, a return path section, a heater that generates heat for making part of a medium facing surface protrude, and a sensor that detects contact of the part of the medium facing surface with a recording medium. The return path section includes: a yoke layer located backward of the main pole along the direction of travel of the recording medium; a first coupling part coupling the yoke layer and the write shield to each other; and a second coupling part located away from the medium facing surface and coupling the yoke layer and the main pole to each other. The first coupling part has an end face facing toward the yoke layer. This end face includes a middle portion spaced from the yoke layer and facing the yoke layer, and two side portions located on opposite sides of the middle portion in a track width direction and in contact with the yoke layer. The sensor is located between the middle portion and the yoke layer.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicants: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka SASAKI, Hiroyuki ITO, Kazuki SATO, Atsushi IIJIMA
  • Publication number: 20120218662
    Abstract: A magnetic head for perpendicular magnetic recording includes a read head unit, a write head unit disposed forward of the read head unit along the direction of travel of a recording medium, a heater that generates heat for causing the medium facing surface to protrude in part, an expansion layer that makes part of the medium facing surface protrude, and a sensor that detects contact of the part of the medium facing surface with the recording medium. The write head unit includes a main pole, a write shield, and a return path section. The return path section includes a yoke layer located backward of the main pole along the direction of travel of the recording medium, a first coupling part that couples the yoke layer and the write shield to each other, and a second coupling part that is located away from the medium facing surface and couples the yoke layer and the main pole to each other.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicants: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka SASAKI, Hiroyuki ITO, Kazuki SATO, Atsushi IIJIMA
  • Patent number: 8253257
    Abstract: A layered chip package includes a main body and wiring. The main body includes a main part including a plurality of stacked layer portions, and a plurality of terminals disposed on the top and bottom surfaces of the main part. The wiring includes a plurality of lines electrically connected to the plurality of terminals. The plurality of lines include a plurality of common lines and a plurality of layer-dependent lines. Each of the plurality of layer portions includes a plurality of common electrodes electrically connected to the plurality of common lines, and a selective connection electrode selectively electrically connected to only the layer-dependent line that the layer portion uses among the plurality of layer-dependent lines. The selective connection electrode varies in shape depending on which of the layer-dependent lines it is electrically connected to.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: August 28, 2012
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hiroshi Ikejima, Atsushi Iijima
  • Publication number: 20120210566
    Abstract: A method of manufacturing a magnetic head includes the steps of: forming a pole-layer-encasing layer having a pole-layer-encasing section; and forming a pole layer in the pole-layer-encasing section. The pole layer includes a first layer, and a second layer formed thereon. The step of forming the pole layer includes the steps of: forming an initial first layer by physical vapor deposition; etching the surface of the initial first layer by dry etching so that the initial first layer becomes the first layer; and forming the second layer on the first layer.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 23, 2012
    Applicant: Headway Technologies, Inc.
    Inventors: Yoshitaka SASAKI, Hiroyuki Itoh, Shigeki Tanemura, Hironori Araki, Kazuo Ishizaki, Takehiro Horinaka
  • Publication number: 20120212855
    Abstract: A magnetic head includes a pole layer accommodated in a groove. The pole layer has a track width defining portion and a wide portion. The pole layer includes a plurality of magnetic films stacked. At least one of the plurality of magnetic films includes a first portion included in the track width defining portion, a second portion included in the wide portion, and a third portion coupling the first and second portions to each other. In a cross section passing through the center of the pole layer taken in the track width direction, the second portion is smaller than the first portion in thickness and the top surface of the third portion is inclined with respect to a direction perpendicular to a medium facing surface.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 23, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Hironori Araki, Kazuo Ishizaki, Takehiro Horinaka
  • Patent number: 8248063
    Abstract: An apparatus and a general method to measure a magnetic field using magneto-resistive sensors in an open-loop configuration are disclosed. A key feature is the regular in-situ normalization of the sensors to compensate for the effects of sensor aging.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 21, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Grace Gorman
  • Patent number: 8248898
    Abstract: A waveguide structure for aligning a light source to a center waveguide (CWG) in a TAMR head is disclosed and includes two alignment waveguides (AWVG) symmetrically formed about a plane that bisects the CWG lengthwise dimension. Each AWVG has a light coupling section formed parallel to a side of the CWG and captures 0.5% to 10% of the light in the CWG. Each AWVG has an outlet that directs light to a photo detector or camera so that light intensity measurements lAWVG1 and lAWVG2 for first and second AWVG, respectively, can be taken at various positions of the light source. Optimum alignment occurs when (lAWVG1+lAWVG2) reaches a maximum value and |lAWVG1?lAWVG2| has a minimum value. AWVG outlets may be at the ABS, or at the side or back end of a slider. Measurement sensitivity is increased by decreasing the width of the AWVG.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 21, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Erhard Schreck, Xuhui Jin, Tobias Maletzky, Joe Smyth, Dayu Zhou, Yuchen Zhou, Kenichi Takano
  • Patent number: 8248897
    Abstract: A method for manufacturing a thermally-assisted magnetic recording head is provided, in which a light source unit including a light source and a slider including an optical system are bonded. A unit substrate is made of a material transmitting light having a predetermined wavelength, and a unit adhesion material layer that contains Sn, Sn alloy, Pb alloy or Bi alloy is formed on the light source unit and/or the slider. The manufacturing method includes: aligning the light source unit and the slider in such a way that a light from the light source can enter the optical system and the unit adhesion material layer is sandwiched therebetween; and causing a light including the predetermined wavelength to enter the unit substrate to melt the unit adhesion material layer. The unit adhesion material layer melted by the light including the predetermined wavelength can ensure high alignment accuracy as well as higher bonding strength and less change with time.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 21, 2012
    Assignees: TDK Corporation, Headway Technologies, Inc.
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya, Seiichi Takayama, Nobuyuki Mori, Yasuhiro Ito, Kosuke Tanaka, Osamu Shindo, Ryuji Fujii, Takashi Honda, Yoshitaka Sasaki
  • Patent number: 8248895
    Abstract: A method for manufacturing a thermally-assisted magnetic recording head is provided, in which a light source unit including a light source and a slider including an optical system are bonded. A unit substrate is made of a material transmitting light having a predetermined wavelength, and an adhesion material layer is formed on the light source unit and/or the slider. The manufacturing method includes: aligning the light source unit and the slider in such a way that a light from the light source can enter the optical system and the adhesion material layer is sandwiched therebetween; irradiating the adhesion material layer with a light including the predetermined wavelength through the unit substrate; and bonding them. The adhesion material layer melted by the light including the predetermined wavelength and transmitted through the unit substrate can ensure high alignment accuracy as well as higher bonding strength and less change with time.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 21, 2012
    Assignees: TDK Corporation, Headway Technologies, Inc.
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya, Seiichi Takayama, Nobuyuki Mori, Yasuhiro Ito, Kosuke Tanaka, Osamu Shindo, Ryuji Fujii, Takashi Honda, Yoshitaka Sasaki
  • Patent number: 8248894
    Abstract: A thermally assisted magnetic head includes a main magnetic pole layer, a near-field light generating layer having a generating end part generating near-field light arranged within a medium-opposing surface, and an optical waveguide guiding light to the near-field light generating layer. The near-field light generating layer has a near-field light generating part in a triangle shape with the generating end part being one vertex, and is formed in a triangle pole shape. The optical waveguide is formed to be opposed to a ridge part of the near-field light generating layer via an interposed layer. The main magnetic pole layer is formed to be opposed to the generating end part via the interposed layer. The thermally assisted magnetic head further includes a heat radiating layer in contact with an opposite side of the near-field light generating layer from the optical waveguide.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: August 21, 2012
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima