Patents Assigned to Heartport, Inc.
  • Patent number: 6564805
    Abstract: Devices and methods are provided for less-invasive surgical treatment of cardiac valves whereby the need for a gross thoracotomy or median sternotomy is eliminated. In one aspect of the invention, a delivery system for a cardiac valve prosthesis such as an annuloplasty ring or prosthetic valve includes an elongated handle configured to extend into the heart through an intercostal space from outside of the chest cavity, and a prosthesis holder attached to the handle for releasably holding a prosthesis. The prosthesis holder is attached to the handle in such a way that the holder, prosthesis and handle have a profile with a height smaller than the width of an intercostal space when the adjacent ribs are unretracted, preferably less than about 30 mm.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 20, 2003
    Assignee: Heartport, Inc.
    Inventors: Michi E. Garrison, Brian S. Donlon, S. Christopher Daniel, John H. Stevens
  • Patent number: 6558318
    Abstract: A method for manipulating a tissue structure within a thoracic cavity of a patient includes the step of providing a tissue positioning tool having a shaft, a tool support apparatus and a tissue supporting member releasably connectable to the shaft. The tool support apparatus includes a clamp assembly configured to secure the shaft to the tool support apparatus. The tool support apparatus is positioned on an outer surface of a patient's chest and at least a portion of the shaft and the tissue supporting member are introduced into the patient's thoracic cavity. The tissue supporting member is attached to the portion of the shaft that is disposed within the patient so as to contact a tissue structure. A force is applied to the shaft to displace the tissue structure and the shaft is locked to the tool support apparatus with the clamp assembly.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: May 6, 2003
    Assignee: Heartport, Inc.
    Inventors: S. Christopher Daniel, Robert K. Deckman, Michi E. Garrison
  • Patent number: 6533770
    Abstract: A cannula having reinforced sections and nonreinforced sections, the nonreinforced sections having openings communicating with the lumen of the cannula. The nonreinforced sections are plain tubing and the reinforced sections are formed by winding a coated elongate member in a helical manner around a mandrel. The coated elongate member preferably has a square cross-sectional shape so that adjacent portions of the coated elongate member engage one another when the coated elongate member is wound around the mandrel. The coated elongate member is then heated so that the coating on adjacent portions of the coated elongate member fuse together to form an integral structure. Another layer of material may be provided on the radially inner or outer wall of the coated elongate member. The resulting tubular body is reinforced by the elongate member which is encased in the fused coating. The tubular body is cut into sections which are fused to the plain tubing sections to form the cannula.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: March 18, 2003
    Assignee: Heartport, Inc.
    Inventors: Keke J. Lepulu, Sylvia W. Fan
  • Patent number: 6508759
    Abstract: A surgical microscope comprising a microscope body, lens means attached to the microscope body for magnifying an object image, an eyepiece attached to the microscope body for viewing the magnified object image, and coupling means attached to the microscope body for retaining a supplementary lens in optical alignment with the lens means, the coupling means being configured for introducing the supplementary lens through a percutaneous penetration into a body cavity, wherein the eyepiece and the lens means are configured to facilitate stereoscopic viewing. In a variation of the surgical microscope, a plurality of binocular eyepieces are attached to the microscope body to allow multiple persons to contemporaneously view the magnified object image.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: January 21, 2003
    Assignee: Heartport, Inc.
    Inventors: Charles S. Taylor, Brian S. Donlon, Timothy R. Machold
  • Patent number: 6494897
    Abstract: A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta. The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: December 17, 2002
    Assignee: Heartport, Inc.
    Inventors: Wesley D. Sterman, Lawrence C. Siegel, Patricia E. Curtis, John H. Stevens, Timothy R. MacHold
  • Patent number: 6491705
    Abstract: A system for performing an end-to-side vascular anastomosis, including an anastomosis device, an application instrument and methods for performing a vascular anastomosis. The system is applicable for performing an anastomosis between a vascular graft and the ascending aorta in coronary artery bypass surgery, particularly in port-access CABG surgery. A first aspect of the invention includes a vascular anastomosis staple. A first configuration has two parts: an anchor member, forming the attachment with the target vessel wall and a coupling member, forming the attachment with the bypass graft vessel. The anastomosis is completed by inserting the coupling member, with the graft vessel attached, into the anchor member. A second configuration combines the functions of the anchor member and the coupling member into a one-piece anastomosis staple.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: December 10, 2002
    Assignee: Heartport, Inc.
    Inventors: Hanson S. Gifford, III, Lee R. Bolduc, Jeffrey A. Stein, Paul C. DiCesare, Peter F. Costa, William A. Holmes
  • Patent number: 6491704
    Abstract: A system for performing an end-to-side vascular anastomosis, including an anastomosis device, an application instrument and methods for performing a vascular anastomosis. The system is applicable for performing an anastomosis between a vascular graft and the ascending aorta in coronary artery bypass surgery, particularly in port-access CABG surgery. A first aspect of the invention includes a vascular anastomosis staple. A first configuration has two parts: an anchor member, forming the attachment with the target vessel wall and a coupling member, forming the attachment with the bypass graft vessel. The anastomosis is completed by inserting the coupling member, with the graft vessel attached, into the anchor member. A second configuration combines the functions of the anchor member and the coupling member into a one-piece anastomosis staple.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: December 10, 2002
    Assignee: Heartport, Inc.
    Inventors: Hanson S. Gifford, III, Lee R. Bolduc, Jeffrey A. Stein, Paul C. DiCesare, Peter F. Costa, William A. Holmes
  • Patent number: 6482171
    Abstract: A multi-lumen catheter having a reinforcing member wrapped around at least one of the lumens in a helical manner. An inflation lumen is positioned outside the reinforcing member for inflating a balloon carried by the catheter. A two-lumen extrusion is bonded to the reinforced lumen to form the multi-lumen catheter. The multi-lumen catheter is particularly useful as an aortic occlusion catheter.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: November 19, 2002
    Assignee: Heartport, Inc.
    Inventors: Timothy J. Corvi, John H. Stevens
  • Patent number: 6482151
    Abstract: The invention provides a system and method for performing less-invasive surgical procedures within a body cavity. In a preferred embodiment, the invention provides a system and method for isolating a surgical site such as an anastomosis between an internal mammary artery and a coronary artery in a thoracoscopic coronary artery bypass grafting procedure. The system comprises a foot (11) pivotally coupled to the distal end of a shaft (3) by a linkage (13). The foot has first and second engaging portions (15, 17) with contact surfaces for engaging a tissue surface. The engaging portions are movable between an open position, where the contact surfaces are separated by a gap, and a collapsed position, where the foot is configured for delivery through the percutaneous penetration.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: November 19, 2002
    Assignee: Heartport, Inc.
    Inventors: Mark A. Vierra, Alex T. Roth
  • Patent number: 6461365
    Abstract: Surgical clips, and methods of use thereof, are provided for tissue approximation and attachment, and more particularly, for sealingly joining a graft vessel to a target vessel. The graft vessel has a free end and a graft vessel wall defining a graft lumen. The target vessel has a target vessel wall defining a target lumen and has an opening in the target vessel wall. The anastomosis clip includes a clip body having a distal extremity with a distal end and a proximal extremity with a proximal end. The distal end is configured to penetrate through the graft vessel wall near the free end and through the target vessel wall near the opening such that both the distal and proximal ends of the clip body are outside the graft and target vessels. At least a portion of the clip body is shapable so as to compress the graft vessel wall against the target vessel wall with the target vessel lumen in communication with the graft vessel lumen.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: October 8, 2002
    Assignee: Heartport, Inc.
    Inventors: Lee R. Bolduc, Hanson S. Gifford, III, James I. Fann
  • Patent number: 6443965
    Abstract: A system for performing an end-to-side vascular anastomosis, including an anastomosis device, an application instrument and methods for performing a vascular anastomosis. The system is applicable for performing an anastomosis between a vascular graft and the ascending aorta in coronary artery bypass surgery, particularly in port-access CABG surgery. A first aspect of the invention includes a vascular anastomosis staple. A first configuration has two parts: an anchor member, forming the attachment with the target vessel wall and a coupling member, forming the attachment with the bypass graft vessel. The anastomosis is completed by inserting the coupling member, with the graft vessel attached, into the anchor member. A second configuration combines the functions of the anchor member and the coupling member into a one-piece anastomosis staple.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: September 3, 2002
    Assignee: Heartport, Inc.
    Inventors: Hanson S. Gifford, III, Lee R. Bolduc, Jeffrey A. Stein, Paul C. DiCesare, Peter F. Costa, William A. Holmes
  • Patent number: 6443922
    Abstract: An endovascular system for arresting a patient's heart and maintaining the patient on cardiopulmonary bypass. A venous cannula, venting catheter and an aortic occlusion device are all coupled together so that the blood drawn into each of these catheters may be fed to a pump. A manifold has valves which control flows through the venous cannula, venting catheter and aortic occlusion device. A blood storage element is also provided so that the amount of blood in the perfusion circuit may be varied if necessary. The blood storage element is preferably positioned in parallel with the pump so that the pump may be used to add and remove blood to and from the blood storage element.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: September 3, 2002
    Assignee: Heartport, Inc.
    Inventors: Craig P. Roberts, John M. Toomasian, Sylvia W. Fan
  • Patent number: 6416468
    Abstract: A surgical retractor has a frame and first and second retractor blades coupled to the frame. The retractor blades engage opposite sides of an incision in a patient's body and are relatively movable toward or away from each other along a first axis. When using the retractor in lift mode, a foot is coupled to the frame or one of the blades and engages the patient's body adjacent the incision. An actuator imparts relative movement to the retractor blades along the first axis and the foot acts as a support base with one of the blades moving relative to the frame to lift the ribs at one side of the incision above the other. To use the retractor in spread mode the foot is removed and the retractor blades spread of the ribs without lifting.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: July 9, 2002
    Assignee: Heartport, Inc.
    Inventors: Robert K. Deckman, Jeffrey W. Krier, Scott H. Miller
  • Patent number: 6350252
    Abstract: A device and method for occluding a patient's ascending aorta, maintaining circulation of oxygenated blood in the patient and delivering cardioplegic fluid to arrest the patient's heart. An aortic occlusion device has an occluding member in the form of a non-inflatable structure which is moved mechanically between collapsed and expanded orientations. The device is introduced into the ascending aorta in its collapsed orientation and is moved to its expanded orientation to occlude the aorta. The aortic occlusion includes a lumen through which blood is delivered to the patient. The lumen may be provided in the aortic occlusion device or in a separate cannula coupled to the device.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: February 26, 2002
    Assignee: Heartport, Inc.
    Inventors: Pinaki Ray, William W. Malecki, Jan Komtebedde
  • Publication number: 20020022848
    Abstract: An apparatus for minimizing the risk of air embolism includes an instrument delivery member 2 having a gas outlet 38 for delivering gas into a patient's thoracic cavity. The gas is directed across an opening 48 in the instrument delivery member 2 to help retain the gas in the patient's thoracic cavity. The gas is preferably carbon dioxide which is more soluble in blood than air which will thereby decrease the likelihood of the patient receiving an embolism due to trapped air in the patient's heart and great vessels after surgery.
    Type: Application
    Filed: June 1, 2001
    Publication date: February 21, 2002
    Applicant: HEARTPORT, INC.
    Inventors: Michi E. Garrison, Brian S. Donlon, Richard L. Mueller
  • Patent number: 6346074
    Abstract: Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart.
    Type: Grant
    Filed: June 12, 1996
    Date of Patent: February 12, 2002
    Assignee: Heartport, Inc.
    Inventor: Alex T. Roth
  • Patent number: 6331157
    Abstract: The invention provides an apparatus for performing surgery on a heart of a patient comprising a first arm, a second arm and an actuator, the actuator moving the first arm relative to the second arm. The apparatus further includes a first blade on the first arm and a second blade on the second arm, the first and second blades having first and second surfaces facing away from each other, the first and second surfaces being adapted to atraumatically engage tissue or bone for the retraction thereof. The apparatus also includes a stabilizer adapted to be mounted to one of the first and second arms and having a foot, the foot being configured to atraumatically engage the surface of the heart. In a various embodiments, the apparatus includes removable blades mounted to the arms, suture stays removably mounted to the arms, and multiple rails for mounting the stabilizer in various positions.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: December 18, 2001
    Assignee: Heartport, Inc.
    Inventor: Andrew H. Hancock
  • Patent number: 6322578
    Abstract: Microsurgical instruments for performing extremely small-scale, minimally-invasive microsurgery such as thoracoscopic coronary artery bypass grafting. The instruments utilize a symmetrical, forcep-like actuator which provides extremely precise actuation and control of the instrument and which mimics the feel of instruments used in conventional open surgical procedures. The instruments generally include a pair of coaxially arranged shafts, an end-effector at the distal ends of the shafts, and an actuator at the proximal ends of the shafts. The actuator includes a pair of arms pivotally coupled to one of the outer and inner shafts, and a pair of links pivotally coupled at one end to the arms, and at a second end to the other of the shafts. The links are coupled to a proximal portion of the arms to maximize mechanical advantage and reduce interference. The actuator may be easily adapted for either pull-type or push-type actuation, and for either outer shaft or inner shaft translation.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: November 27, 2001
    Assignee: Heartport, Inc.
    Inventors: Philip R. Houle, Alex T. Roth, Scott H. Miller
  • Publication number: 20010044591
    Abstract: A system for accessing a patient's cardiac anatomy which includes an endovascular aortic partitioning device that separates the coronary arteries and the heart from the rest of the patient's arterial system. The endovascular device for partitioning a patient's ascending aorta comprises a flexible shaft having a distal end, a proximal end, and a first inner lumen therebetween with an opening at the distal end. The shaft may have a preshaped distal portion with a curvature generally corresponding to the curvature of the patient's aortic arch. An expandable means, e.g. a balloon, is disposed near the distal end of the shaft proximal to the opening in the first inner lumen for occluding the ascending aorta so as to block substantially all blood flow therethrough for a plurality of cardiac cycles, while the patient is supported by cardiopulmonary bypass. The endovascular aortic partitioning device may be coupled to an arterial bypass cannula for delivering oxygenated blood to the patient's arterial system.
    Type: Application
    Filed: February 2, 2001
    Publication date: November 22, 2001
    Applicant: HEARTPORT, INC.
    Inventors: John H. Stevens, Wesley D. Sterman, Hanson S. Gifford, Timothy R. Machold
  • Patent number: 6293920
    Abstract: A catheter system and method for achieving total cardiopulmonary bypass during heart surgery. A venous perfusion catheter is inserted peripherally into a preselected vein where it is advanced and positioned at the atrio-caval junction. The venous perfusion catheter has first and second balloons which when inflated respectively occlude the inferior and superior vena cava thereby precluding blood flow into the right atrium. An arterial perfusion catheter is inserted peripherally into a preselected arterial vessel and advanced within the vessel and positioned in the ascending aorta cephalid of the junction of the coronary arteries with the aortic root. A second flexible arterial cannula is mounted in sliding relationship with the first flexible cannula and carries an inflatable balloon acjacent its distal end to provide for occlusion of the ascending aorta.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: September 25, 2001
    Assignee: Heartport, Inc.
    Inventors: William Penn Sweezer, James Jimison, Ronald L. Coleman