Abstract: Various flexible heat sealable decorative articles and methods of making the same are described. The flexible heat sealable decorative articles are lightweight and can be combined with other decorative elements, such as metalized films. Various decorative are mixed or combined with one another to form highly attractive flexible heat sealable decorative articles.
Abstract: Various flexible heat sealable decorative articles and methods of making the same are described. The flexible heat sealable decorative articles are lightweight and can be combined with other decorative elements, such as metalized films. Various decorative are mixed or combined with one another to form highly attractive flexible heat sealable decorative articles.
Abstract: A stretchable knit appliqué is described. The appliqué is configured by a knitted textile material adhered to an elastomeric film by a first adhesive continuously distributed over elastomeric film. Moreover, the appliqué is configured to stretch with the elastomeric film. The appliqué can have a first and second knitted materials, with a printed design in registration with the first and second textile materials. The printed design can be a sublimation printed design.
Abstract: A stretchable knit appliqué is described. The appliqué is configured by a woven textile material adhered to an elastomeric film by a first adhesive continuously distributed over elastomeric film. Moreover, the appliqué is configured to stretch with the elastomeric film. The appliqué can have a first and second woven materials, with a printed design in registration with the first and second textile materials. The printed design can be a sublimation printed design.
Abstract: A flocked article having a resistance to splitting is described. The article has a flock layer adhered to one side of an elastomeric adhesive layer and an inelastic layer adhered to the other side of the elastomeric adhesive layer. The flock layer is adhered to a stretchable and/or elastic substrate by a third adhesive positioned between and in contact with the inelastic layer and the stretchable and/or elastic substrate.
Abstract: The invention is directed generally to stretchable flocked articles and/or assemblies, more specifically stretchable flocked articles and/or assemblies having at least one elastomeric adhesive and a method for making the same. One aspect of the invention is an elastomeric textile product comprising a textile design and a self-supporting, elastomeric adhesive layer. In one preferred embodiment, the self-supporting, elastomeric adhesive layer comprises an elastomeric film position between opposing first and second adhesive films.
Abstract: The present invention is directed to an unstitched design having the appearance of being stitched or embroidered. A stitched design is digitally imaged, and the digital image used to control dye sublimation printing of a representation of the image onto a desired surface. In one configuration, the surface is a woven textile.
Abstract: A method of decorating a molded article is provided that includes the steps of: (a) providing a mold insert comprising a plurality of flock fibers and a permanent adhesive layer; (b) positioning the mold insert in a mold; and (c) introducing resin into the mold, such that a resin contacts the mold insert to form a molded article. The melting point of the permanent adhesive layer is preferably greater than a temperature of the resin during molding.
Abstract: In one embodiment, a flocked article is provided that includes an elastomeric film and a plurality of flock fibers on a flocked surface of the film. The flock fibers are embedded in the film.
Abstract: A multi-colored flocked article is provided having a plurality of flock and adhesive regions. Each flock region is defined by a plurality of flock fibers that are substantially the same in color and are substantially free of light dispersants, such as titanium dioxide. Further, each flock region is of a different color relative to an adjacent flock region to form a patterned, multi-colored design. Each of the plurality of adhesive regions corresponds to a flock region and includes a colored adhesive. The color of the adhesive is at least similar or substantially similar in color to the flock fibers in the corresponding flock region.
Abstract: In one embodiment, a flocked article is provided that includes an elastomeric film and a plurality of flock fibers on a flocked surface of the film. The flock fibers are embedded in the film.
Abstract: A flocked transfer is produced by applying a release agent to a release sheet, and then applying the flocking to a release agent. Unlike the traditional method, a binder and thermoplastic hot melt film is applied to the back of the flock. The transfer, which is essentially release sheet, is then applied to a substrate, such as item of clothing, a rubber pad, etc., by positioning a sheet of thermoplastic hot melt film on the substrate; placing the transfer on the hot melt with the flock in contact with the hot melt film, and applying heat and pressure. The heat melts the thermoplastic hot melt film to bind the flock to the substrate and binds the flocking together. This method reduces the cost involved in producing flocked articles, especially for articles produced on a continuous basis.
Abstract: In one embodiment, a method for producing a decorative article, comprising: (a) providing a flocked surface, the flocked surface comprising a plurality of flock fibers and an activatable adhesive, wherein the activatable adhesive is less than 50% activated; (b) dimensionalizing the plurality of flock fibers, such that a first set of fibers is embedded to a greater distance in the activatable adhesive than a second set of fibers; and (c) after dimensionalizing, at least substantially fully activating the activatable adhesive to form the decorative article.
Abstract: The processes and articles of the present invention use thermally stable and loft retentive polymers in sublimation printed flock fibers, which are particularly attractive for forming molded articles. A preferred polymer is poly(cyclohexylene-dimethylene terephthalate.
Abstract: The present invention describes a flocked stretchable design and a process for producing a flocked stretchable design or transfer. The design, when configured as a transfer, includes a carrier layer, a release adhesive applied to the carrier layer, a plurality of flock fibers releasably attached to the release adhesive, an elastic film, and a first adhesive layer bonded to the flock fibers and the elastic film, and a second, discontinuously distributed, adhesive layer bonded to the other side of the elastic film. The design, when direct flocked, does not include the carrier and the release adhesive. The present invention also includes methods of producing both the designs.
Abstract: A flocked transfer is produced by applying a release agent to a release sheet and then applying the flocking to the release agent. Unlike the traditional method, a binder and hot melt film is not applied to the back of the flock. The transfer (which is essentially a flocked release sheet) is then applied to a substrate (i.e., an item of clothing, a rubber pad, etc.) by positioning a sheet of thermosetting hot melt film on the substrate; placing the transfer on the hot melt film with the flock in contact with the hot melt film; and applying heat and pressure. The heat melts the thermosetting hot melt film to bind the flock to the substrate and binds the flocking together. This method reduces the costs involved in producing flocked articles, especially for articles produced on a continuous basis.