Patents Assigned to Hitachi Metals
  • Patent number: 11041749
    Abstract: Mass flow controllers and methods for controlling mass flow controllers are disclosed. One method includes providing a process gas through a flow sensor of the mass flow controller, obtaining a gas-adjusted sensitivity coefficient for the flow sensor, and obtaining gas-adjusted nonlinearity data for the flow sensor. The method also includes producing gas-adjusted characterization data for the flow sensor using the gas-adjusted sensitivity coefficient and the gas-adjusted nonlinearity data. A flow value from the gas-adjusted characterization data is obtained using a flow sensor signal from the flow sensor, and the flow value is used along with a setpoint signal to control a valve of the mass flow controller.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 22, 2021
    Assignee: Hitachi Metals, Ltd.
    Inventor: Alexei V. Smirnov
  • Patent number: 11041091
    Abstract: A cable includes a sheath, and a coating film covering a circumference of the sheath, the coating film adhering to the sheath. The coating film is formed from a rubber composition including a rubber component and fine particles. A static friction coefficient on a surface of the coating film is 0.5 or less. When the coating film is subjected to a testing such that a long fiber non-woven fabric including cotton linters including an alcohol for disinfection with a length of 50 mm along a wiping direction is brought contiguous to the surface of the coating film at a shearing stress of 2×10?3 MPa to 4×10?3 MPa, followed by wiping off the surface of the coating film at a speed of 80 times/min to 120 times/min and 20,000 repetitions thereof for a wiping direction length of 150 mm, a difference (an absolute value of a difference) between the static friction coefficients of the coating film before and after the testing is not greater than 0.1.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: June 22, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Seiichi Kashimura, Masamichi Kishi, Naoto Teraki, Takanobu Watanabe, Yuriko Kiyokane
  • Publication number: 20210178463
    Abstract: A casting apparatus for producing a casting by pouring a metal melt into a gas-permeable casting mold by gravity, comprising: a gas-permeable casting mold comprising a cavity including a sprue composed of a tubular portion and a cup portion having a larger diameter than that of the tubular portion to receive the metal melt, a runner constituting a flow path of the metal melt supplied through the sprue, and a product-forming cavity to be filled with the metal melt sent through the runner; a means for pouring the metal melt into the sprue by gravity; a gas-blowing unit comprising a gas-ejecting member to be connected to the sprue; and a mechanism for moving the gas-ejecting member; the gas-ejecting-member-moving mechanism placing the gas-ejecting member at a position just above the tubular portion and not interfering with gravity pouring of the metal melt, and moving it downward for connection to the tubular portion; the gas-blowing unit having blowing a gas to fill the product-forming cavity with the metal mel
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Applicant: HITACHI METALS, LTD.
    Inventors: Masahide KAWABATA, Toru IWANAGA, Kiyoshi SUEHARA, Yutaka MORITA, Masafumi KOKUBO
  • Patent number: 11033885
    Abstract: A ceramic honeycomb structure comprising large numbers of cells partitioned by porous cell walls, the cell walls having (a) porosity of 50-80%, and when measured by mercury porosimetry, (b) a median pore diameter being 25-50 ?m, (c) (i) a cumulative pore volume in a pore diameter range of 20 ?m or less being 25% or less of the total pore volume, (ii) a cumulative pore volume in a pore diameter range of more than 20 ?m and 50 ?m or less being 50% or more of the total pore volume, and (iii) a cumulative pore volume in a pore diameter range of more than 50 ?m being 12% or more of the total pore volume.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: June 15, 2021
    Assignee: HITACHI METALS, LTD.
    Inventor: Shunji Okazaki
  • Patent number: 11035888
    Abstract: A current sensor includes a bus bar in which a current to be detected flows, a circuit board mounted with a magnetic detection element thereon to detect a strength of a magnetic field generated by a current flowing in the bus bar, and a housing including first and second housings provided in such a manner as to sandwich the bus bar and the circuit board therebetween in a plate thickness direction of the bus bar. The first and second housings include slide guide portions respectively which are relatively slidable in a sloping direction with respect to the plate thickness direction of the bus bar while abutting each other in the plate thickness direction of the bus bar.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 15, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Jun Umetsu, Naoki Futakuchi, Haruyasu Komano, Ken Okuyama, Yujiro Tomita
  • Patent number: 11037724
    Abstract: A method of producing a sintered R-T-B based magnet includes providing a sintered R-T-B based magnet work, an RH compound (at least one selected from RH fluorides, RH oxides, and RH oxyfluorides), and an RL-Ga alloy, where the sintered magnet work contains R: 27.5 to 35.0 mass %, B: 0.80 to 0.99 mass %, Ga: 0 to 0.8 mass %, M: 0 to 2 mass % (where M is at least one of Cu, Al, Nb and Zr), and T: 60 mass % or more; a diffusion step of, while keeping the RH compound and the RL-Ga alloy in contact with a surface of the sintered magnet work, performing a first heat treatment between 700° C. and 950° C. to increase the RH amount contained in the sintered magnet work by between 0.05 mass % and 0.40 mass %; and performing a second heat treatment between 450° C. and 750° C. but which is lower than the first heat treatment.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 15, 2021
    Assignee: HITACHI METALS, LTD.
    Inventor: Futoshi Kuniyoshi
  • Patent number: 11037702
    Abstract: A high frequency cable includes a center conductor comprising one first wire, which is located at the center of the center conductor, and a plurality of second wires, which are located around that one first wire, and the one first wire and the plurality of second wires are stranded together. Respective outer peripheral surfaces of the plurality of second wires constitute a substantially continuous circular peripheral surface as an outer peripheral surface of the center conductor.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: June 15, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Detian Huang, Masashi Moriyama
  • Publication number: 20210170480
    Abstract: The present disclosure provides a powder material that makes it possible to achieve higher flowability than before and to increase the crushing strength of particles. The powder material of the present disclosure has a dendritic structure 1. The dendritic structure 1 has a cemented carbide composition or a cermet composition.
    Type: Application
    Filed: November 27, 2018
    Publication date: June 10, 2021
    Applicant: HITACHI METALS, LTD.
    Inventors: Hirotsugu KAWANAKA, Hiroshi SHIRATORI, Shuho KOSEKI, Tadashi FURUYA, Gang HAN, Kiyomi NAKAMURA
  • Patent number: 11031238
    Abstract: In a silicon carbide stacked substrate, the efficiency of converting the basal plane dislocation (BPD) which is a fault to deteriorate the current-carrying reliability into a threading edge dislocation (TED) which is a harmless fault is improved, thereby improving the reliability of the silicon carbide stacked substrate. As means therefor, in a silicon carbide stacked substrate including a SiC substrate and a buffer layer and a drift layer which are epitaxial layers sequentially formed on the SiC substrate, a semiconductor layer having an impurity concentration lower than those of the SiC substrate and the buffer layer and higher than that of the drift layer is formed between the SiC substrate and the buffer layer so as to be in contact with an upper surface of the SiC substrate.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: June 8, 2021
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kumiko Konishi, Kiyoshi Oouchi, Keisuke Kobayashi, Akio Shima
  • Patent number: 11031154
    Abstract: A composite cable includes a twisted assembly including a pair of first single core wires and first and second multicore wires that are each arranged in one or the other of regions facing each other across a center plane passing through the central axes of the pair of first single core wires, include an electric wire with a solid (non-hollowed) structure including a first or second twisted pair wire formed by twisting a pair of second or third single core wires with a smaller cross-sectional area than the first single core wire and a first or second inner sheath covering the first or second twisted pair wire so as to fill a space between the pair of second or third single core wires, and have an outer diameter that is not less than 70% and not more than 160% of the outer diameter of the first single core wire.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 8, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Yoshikazu Hayakawa, Tomoyuki Murayama, Hirotaka Eshima, Takahiro Futatsumori
  • Publication number: 20210162497
    Abstract: Provided is a method for producing a TiAl intermetallic compound powder in which it is possible to reduce the number of internal pores. Also provided is a TiAl intermetallic compound powder in which internal pores have been reduced in number. This method for producing a TiAl intermetallic compound powder comprises passing a cutting chips of a TiAl intermetallic compound through a thermal plasma flame and performing a spheroidizing treatment. This TiAl intermetallic compound powder of which a cross section has a porosity of 0-0.4 area %. The TiAl intermetallic compound powder described above is suitable as a raw material powder for use in fabricating a molded article by various powder metallurgy methods and/or layer molding methods.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 3, 2021
    Applicant: HITACHI METALS, LTD.
    Inventors: KIYOMI NAKAMURA, Gang HAN, Koichi Sakamaki, Kazuya SAITO
  • Publication number: 20210154712
    Abstract: A centrifugally cast composite roll for rolling comprising an outer layer and an inner layer, which are integrally fused to each other, the outer layer being made of an Fe-based alloy comprising by mass 1.70-2.70% of C, 0.3-3% of Si, 0.1-3% of Mn, 1.1-3.0% of Ni, 4.0-10% of Cr, 2.0-7.5% of Mo, 3-6.0% of V, 0.1-2% of W, 0.2-2% of Nb, 0.01-0.2% of B, and 0.01-0.1% of N, the balance being Fe and inevitable impurities, and the inner layer being made of ductile cast iron.
    Type: Application
    Filed: August 7, 2019
    Publication date: May 27, 2021
    Applicant: HITACHI METALS, LTD.
    Inventors: Yasunori NOZAKI, Nozomu ODA
  • Patent number: 11014134
    Abstract: Provided is a slitter device capable of quickly supplying metal bands to a cutter stand and cutting same into strips with high speed and accuracy. The metal band slitter device comprises an unwinder that unwinds a metal band wound into a coil, a cutter stand that cuts the unwound metal band into narrow width strips, and a winder that winds the cut metal band into coils. The metal band slitter device is configured to comprise a tension adjustment unit on the winder side between the unwinder and the cutter stand that provides a constant tension to the metal band and a tension separating unit on the cutter stand side that separates the constant tension on the input side and tension on the output side.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 25, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Ryo Nishimura, Katsuya Kobayashi, Akihiro Maeta
  • Patent number: 11007566
    Abstract: A casting green sand mold comprising at least a pair of green sand mold parts each having a cavity portion, which are stacked with their cavity portions aligned to form a metal-melt-receiving cavity; each of the green sand mold parts being formed by casting sand containing a binder and water; a hardening-resin-based coating layer being formed on at least the cavity portion of each green sand mold part; the coating layer having gas-permeable pores having sufficient permeability to permit a gas generated by pouring a metal melt to escape; and a water content in a surface layer including the coating layer in a range from the cavity surface to the depth of 5 mm being smaller than that in the inner portion of the green sand mold.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 18, 2021
    Assignee: HITACHI METALS, LTD.
    Inventor: Kentaro Fukumoto
  • Patent number: 11011751
    Abstract: A compound having a layered structure that is used for a positive electrode active material for a lithium ion secondary battery achieves both a high energy density and a high cyclability. The positive electrode active material for a lithium ion secondary battery contains a compound having a layered structure belonging to a space group R-3m, in which the compound having a layered structure is represented by a compositional formula: Li1+aM1O2+? wherein M1 represents a metal element or metal elements other than Li, and contains at least Ni, ?0.03?a?0.10, and ?0.1<?<0.1, a proportion of Ni in M1 is larger than 70 atom %, and a site occupancy of a transition metal or transition metals at a 3a site obtained by structural analysis by a Rietveld method is less than 2%, and a content of residual lithium hydroxide in the positive electrode active material is 1 mass % or less.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 18, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Akira Gunji, Tatsuya Toyama, Shin Takahashi, Takashi Nakabayashi, Shuichi Takano, Xiaoliang Feng, Sho Furutsuki, Hisato Tokoro
  • Patent number: 11009560
    Abstract: A method for testing a multicore cable including a single common shield covering plural insulated wires to identify a correspondence relation between one end portion and the other end portion of the insulated wires exposed from both ends of the multicore cable. The testing method includes allowing the common shield to have a same potential as a measurement system ground, inputting a test signal, by capacitive coupling, to an end portion of the insulated wire under test among end portions of the insulated wires exposed at one end of the multicore cable, and measuring voltages of output signals output by capacitive coupling respectively from end portions of the insulated wires exposed at the other end of the multicore cable, and identifying the other end portion of the insulated wire under test based on the measured voltages.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: May 18, 2021
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yohei Shirakawa, Yoshitake Ageishi
  • Patent number: 11007672
    Abstract: A ceramic honeycomb structure comprising a ceramic honeycomb body having pluralities of longitudinal flow paths partitioned by square-lattice-cross-sectioned cell walls, and an outer peripheral wall formed on an outer periphery of the ceramic honeycomb body; the outermost peripheral cell wall of the ceramic honeycomb body having an outer peripheral surface shape reflecting the square lattice shapes of the cell walls; the thickness of the outer peripheral cell wall being larger than the thickness of the cell walls; and the outer peripheral wall being formed to cover an outer peripheral surface of the outer peripheral cell wall.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 18, 2021
    Assignee: HITACHI METALS, LTD.
    Inventor: Shunji Okazaki
  • Patent number: 11008637
    Abstract: In the method of producing a martensitic stainless steel strip, a quenching furnace of a quenching process includes at least a temperature raising unit and a holding unit. When a predetermined quenching temperature is set as T (° C.), the temperature raising unit is set to be within a temperature range of 0.7T (° C.) or higher and lower than T (° C.), and a set heating temperature on an exit side of the steel strip is set to be higher than a set heating temperature on an entry side of the steel strip when the steel strip passes through the temperature raising unit. The holding unit is set to the quenching temperature T (° C.). A time spent in the furnace by the steel strip in the temperature raising unit is equal to or longer than a time spent in the furnace by the steel strip in the holding unit.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 18, 2021
    Assignee: Hitachi Metals, Ltd.
    Inventor: Hiroyoshi Fujihara
  • Patent number: 11011305
    Abstract: A method for manufacturing a powder magnetic core using a soft magnetic material powder, wherein the method has: a first step of mixing the soft magnetic material powder with a binder, a second step of subjecting a mixture obtained through the first step to pressure forming, and a third step of subjecting a formed body obtained through the second step to heat treatment. The soft magnetic material powder is an Fe—Cr—Al based alloy powder comprising Fe, Cr and Al. An oxide layer is formed on a surface of the soft magnetic material powder by the heat treatment. The oxide layer has a higher ratio by mass of Al to the sum of Fe, Cr and Al than an alloy phase inside the powder.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: May 18, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Yoshimasa Nishio, Shin Noguchi, Kazunori Nishimura, Tetsuroh Katoh, Toshio Mihara
  • Patent number: 11011286
    Abstract: A cable includes a plurality of electric wires, which are laid helically around a center of the cable and along a central axis of the cable, and a sheath provided to cover respective peripheries of the plurality of electric wires together. The sheath includes an inner layer sheath made of a urethane resin, and an outer layer sheath provided around an outer periphery of the inner layer sheath to protect the inner layer sheath. The cable may further include a core member at its center. The sheath may be composed of a single layer instead of plural layers.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: May 18, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Detian Huang, Yoshinori Tsukamoto, Masanori Kobayashi, Masashi Moriyama, Isao Matsuoka