Patents Assigned to Hitachi ULSI
  • Patent number: 8094104
    Abstract: A liquid crystal drive device having a differential-type input circuit including a differential amplification stage for receiving a differential signal and a buffer stage for generating an output signal on the basis of an output of the differential amplification stage, the liquid crystal drive device for receiving a signal of display data via the input circuit and outputting a signal for driving a liquid crystal panel on the basis of the display data, wherein a liquid crystal driving voltage VLCD larger than a power supply voltage VCC for logic to be supplied to the operation voltage buffer stage is supplied to the differential amplification stage of the input circuit. A standby function of interrupting an operation current of the differential amplification stage in a period where no display data is received is provided.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: January 10, 2012
    Assignees: Hitachi ULSI Systems Co., Ltd., Renesas Electronics Corporation
    Inventors: Arata Kinjo, Kazuo Ookado, Kouichi Kotera, Hitoshi Oda, Masuhiro Endo
  • Patent number: 8076202
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 13, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Patent number: 8050085
    Abstract: A semiconductor processing device according to the invention includes a first non-volatile memory (21) for erasing stored information on a first data length unit, a second non-volatile memory (22) for erasing stored information on a second data length unit, and a central processing unit (2), and capable of inputting/outputting encrypted data from/to an outside. The first non-volatile memory is used for storing an encryption key to be utilized for encrypting the data. The second non-volatile memory is used for storing a program to be processed by the central processing unit. The non-volatile memories to be utilized for storing the program and for storing the encryption key are separated from each other, and the data lengths of the erase units of information to be stored in the non-volatile memories are defined separately.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: November 1, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Masatoshi Takahashi, Takanori Yamazoe, Kozo Katayama, Toshihiro Tanaka, Yutaka Shinagawa, Hiroshi Watase, Takeo Kanai, Nobutaka Nagasaki
  • Patent number: 8051331
    Abstract: In the initial setting of a memory card 1, the flash check data FD stored in a flash memory 2 is read out, this data FD is compared with the operation check data FD11 stored previously in the ROM, the write check data FD12 stored in the ROM 4a is written, if a fault is not detected, to the flash memory 2, and this data is read again and is compared with the write check data. FD12 of the ROM 4a. When any fault is not detected in comparison of these data, the CPU determines that the flash memory 2 is normal. Moreover, if a fault is detected in the comparison of data, the CPU sets the reset process fault data to a register 5a to set a controller 3 to the sleep mode. When the command CMD is received during this period, data comparison is executed again.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: November 1, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Hidefumi Oodate, Atsushi Shiraishi, Shigeo Kurakata, Kunihiro Katayama, Motoki Kanamori
  • Patent number: 8044488
    Abstract: The invention is based upon a semiconductor device where a high voltage bipolar transistor is manufactured on the same wafer with a high-speed bipolar transistor, and has a characteristic that the high-speed bipolar transistor and the high voltage bipolar transistor are formed on each epitaxial collector layer having the same thickness and are provided with a buried collector region formed in the same process and having the same impurity profile, the buried collector region exists immediately under a base of the high-speed bipolar transistor, no buried collector region and no SIC region exist immediately under a base of the high voltage bipolar transistor and distance between a base region and a collector plug region of the high voltage bipolar transistor is equal to or is longer than the similar distance of the high-speed bipolar transistor.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: October 25, 2011
    Assignees: Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd.
    Inventors: Mitsuru Arai, Shinichiro Wada, Hideyuki Hosoe
  • Patent number: 8042021
    Abstract: A memory card has a plurality of non-volatile memories and a main controller for controlling the operation of the non-volatile memories. The main controller performs an access control to the non-volatile memories in response to an external access instruction, and an alternate control for alternating an access error-related storage area of the non-volatile memory with other storage area. In the access control, the speeding up of the data transfer between flash memories is achieved by causing the plurality of non-volatile memories to parallel access operate. In the alternation control, the storage areas is made alternative for each non-volatile memory in which an access error occurs.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: October 18, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Takayuki Tamura, Hirofumi Shibuya, Hiroyuki Goto, Shigemasa Shiota
  • Patent number: 8034717
    Abstract: In order to prevent the contamination of wafers made of a transition metal in a semiconductor mass production process, the mass production method of a semiconductor integrated circuit device of the invention comprises the steps of depositing an Ru film on individual wafers passing through a wafer process, removing the Ru film from outer edge portions of a device side and a back side of individual wafers, on which said Ru film has been deposited, by means of an aqueous solution containing orthoperiodic acid and nitric acid, and subjecting said individual wafers, from which said Ru film has been removed, to a lithographic step, an inspection step or a thermal treating step that is in common use relation with a plurality of wafers belonging to lower layer steps (an initial element formation step and a wiring step prior to the formation of a gate insulating film).
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: October 11, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Co., Ltd.
    Inventors: Takuya Futase, Tomonori Saeki, Mieko Kashi
  • Patent number: 8018006
    Abstract: A semiconductor device includes a lower substrate, a thin semiconductor layer and an insulating layer formed between the lower substrate and the semiconductor layer. An active transistor area is formed with a base formed along a surface of the semiconductor layer, an emitter region formed in the base, a buried collector in the thin semiconductor layer to contact the insulating layer, a collector contacting the buried collector, and emitter, collector and base contacts. The active transistor area is configured to operate at an emitter current at least in the order of mA (milli-ampere). An isolation trench extends through the semiconductor layer to the insulating layer and surrounds the active transistor area with a distance in the order of ?m (micron) from the active transistor area and with a space area of more than 50 ?m2 between the active transistor area and the isolation trench.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 13, 2011
    Assignees: Hitachi ULSI Systems Co., Ltd., Hitachi, Ltd.
    Inventors: Mitsuru Arai, Shinichiro Wada, Hideaki Nonami
  • Patent number: 8017986
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 13, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Publication number: 20110215398
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicants: RENESAS ELECTRONICS CORPORATION, HITACHI ULSI SYSTEMS CO., LTD.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Publication number: 20110199708
    Abstract: In a level conversion circuit mounted in an integrated circuit device using a plurality of high- and low-voltage power supplies, the input to the differential inputs are provided. In a level-down circuit, MOS transistors that are not supplied with 3.3 V between the gate and drain and between the gate and source use a thin oxide layer. In a level-up circuit, a logic operation function is provided.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 18, 2011
    Applicants: RENESAS ELECTRONICS CORPORATION, HITACHI ULSI SYSTEMS CO., LTD.
    Inventors: Kazuo Tanaka, Hiroyuki Mizuno, Rie Nishiyama, Manabu Miyamoto
  • Patent number: 7996821
    Abstract: A data processor having a debugging aid function capable of monitoring a plurality of kinds of internal buses from the outside and identifying each of the buses monitored is provided. A central processing unit (CPU), a debugging aid module, and other circuit modules are mounted on a semiconductor chip. The debugging aid module selects an information transmitting path in accordance with a trace condition from a plurality of information transmitting paths used for the operation of a central processing unit (CPU) or the like, holds trace information obtained according to the trace condition from the selected information transmitting path together with attribute information of the trace information in a buffer circuit, and outputs the information serially to the outside of the semiconductor chip. A plurality of kinds of internal buses can be monitored on the outside, and each of the buses monitored can be identified.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: August 9, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Ryo Sudo, Shigezumi Matsui, Yasunori Matsumoto
  • Patent number: 7990355
    Abstract: A semiconductor integrated circuit includes a first register, a second register, a gray scale voltage generator which outputs a plurality of gray scale voltages, a decoder which selects a gray scale voltage, and an amplifier including a first transistor, a second transistor, a third transistor, and a fourth transistor. A first terminal of the first transistor and a first terminal of the second transistors are connected to a first voltage line, a first terminal of the third transistor and a first terminal of the fourth transistor are connected to a second voltage line, a second terminal of the first transistor is connected to a second terminal of the third transistor, and a second terminal of the second transistor is connected to a second terminal of the fourth transistor.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: August 2, 2011
    Assignees: Hitachi, Ltd., Hitachi Device Engineering Co., Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Mitsuru Goto, Hiroshi Katayanagi, Yukihide Ode, Yoshiyuki Saitou, Koichi Kotera
  • Patent number: 7982314
    Abstract: Circuit elements and wirings constituting a circuit, and first electrodes electrically connected to such a circuit are provided on one main surface of a semiconductor substrate. An organic insulating film is formed on the circuit except for openings on the surfaces of the first electrodes. First and second external connecting electrodes are provided on the organic insulating film. At least one conductive layer for electrically connecting the first and second external connecting electrodes and the first electrodes is placed on the organic insulating film.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 19, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Masao Shinozaki, Kenji Nishimoto, Takashi Akioka, Yutaka Kohara, Sanae Asari, Shusaku Miyata, Shinji Nakazato
  • Patent number: 7972920
    Abstract: Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 5, 2011
    Assignees: Hitachi ULSI Systems Co., Ltd., Renesas Electronics Corp.
    Inventors: Hiraku Chakihara, Kousuke Okuyama, Masahiro Moniwa, Makoto Mizuno, Keiji Okamoto, Mitsuhiro Noguchi, Tadanori Yoshida, Yasuhiko Takahshi, Akio Nishida
  • Patent number: 7965563
    Abstract: A semiconductor device having an electrically erasable and programmable nonvolatile memory, for example, a rewritable nonvolatile memory including memory cells arranged in rows and columns and disposed to facilitate both flash erasure as well as selective erasure of individual units of plural memory cells. The semiconductor device which functions as a microcomputer chip also has a processing unit and includes an input terminal for receiving an operation mode signal for switching the microcomputer between a first operation mode in which the flash memory is rewritten under control of a processing unit and a second operation mode in which the flash memory is rewritten under control of separate writing circuit externally connectable to the microcomputer.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: June 21, 2011
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kiyoshi Matsubara, Naoki Yashiki, Shiro Baba, Takashi Ito, Hirofumi Mukai, Masanao Sato, Masaaki Terasawa, Kenichi Kuroda, Kazuyoshi Shiba
  • Patent number: 7964509
    Abstract: In order to prevent the contamination of wafers made of a transition metal in a semiconductor mass production process, the mass production method of a semiconductor integrated circuit device of the invention comprises the steps of depositing an Ru film on individual wafers passing through a wafer process, removing the Ru film from outer edge portions of a device side and a back side of individual wafers, on which said Ru film has been deposited, by means of an aqueous solution containing orthoperiodic acid and nitric acid, and subjecting said individual wafers, from which said Ru film has been removed, to a lithographic step, an inspection step or a thermal treating step that is in common use relation with a plurality of wafers belonging to lower layer steps (an initial element formation step and a wiring step prior to the formation of a gate insulating film).
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: June 21, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Takuya Futase, Tomonori Saeki, Mieko Kashi
  • Patent number: 7964484
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 21, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai
  • Publication number: 20110140198
    Abstract: Described is a method for fabricating a semiconductor device having an FET of a trench-gate structure obtained by disposing a conductive layer, which will be a gate, in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate. In addition, the conductive layer of the trench gate is formed to have a substantially flat or concave upper surface and the upper surface is formed equal to or higher than the main surface of the semiconductor substrate. Moreover, after etching of the semiconductor substrate to form the upper surface of the conductive layer of the trench gate equal to or higher than the main surface of the semiconductor substrate, a channel region and a source region are formed by ion implantation. The semiconductor device thus fabricated according to the present invention is free from occurrence of a source offset.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicants: RENESAS ELECTRONICS CORPORATION, HITACHI ULSI SYSTEMS, CO., LTD.
    Inventors: Hiroshi Inagawa, Nobuo Machida, Kentaro Ooishi
  • Patent number: 7954039
    Abstract: A memory card has a plurality of non-volatile memories and a main controller for controlling the operation of the non-volatile memories. The main controller performs an access control to the non-volatile memories in response to an external access instruction, and an alternate control for alternating an access error-related storage area of the non-volatile memory with other storage area. In the access control, the speeding up of the data transfer between flash memories is achieved by causing the plurality of non-volatile memories to parallel access operate. In the alternation control, the storage areas is made alternative for each non-volatile memory in which an access error occurs.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 31, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Takayuki Tamura, Hirofumi Shibuya, Hiroyuki Goto, Shigemasa Shiota