Patents Assigned to HRL Laboratories
  • Patent number: 11525878
    Abstract: A superconductor magnetic field effect transistor. The superconductor magnetic field effect transistor may include a sheet of a superconducting material; and a solenoid. The sheet may be substantially flat, and the solenoid may include a plurality of turns, each of the turns being substantially parallel to the sheet. The superconducting material may be a type-II superconducting material.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: December 13, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Yeong Yoon, Jongchan Kang
  • Publication number: 20220389561
    Abstract: A process enables growing thick stoichiometric crystalline and preferably IR-transparent optical PCMO material on Si and other substrates. Sputter deposition is carried out in oxygen-free inert gas (e.g., Ar) environment, which helps to prevent decomposition of the PCMO material over the substrate. In the disclosed process, there is no need to add a seed layer prior to PCMO deposition. Moreover, no post-deposition annealing is needed in a high-temperature and high-pressure oxygen furnace, but an anneal provides certain additional benefits in terms of improved transparency at IR wavelengths. Over a long deposition time for a thick PCMO film on the high temperature (?450° C.) substrates, the PCMO deposition is made repeated cycles of deposition of the PCMO material at the high temperature, each deposition cycle being followed by cooling the PCMO-deposited substrate to a substantially lower temperature (<50° C.).
    Type: Application
    Filed: August 18, 2022
    Publication date: December 8, 2022
    Applicant: HRL Laboratories, LLC
    Inventors: Kyung-Ah SON, Jeong-Sun MOON, Hwa Chang SEO, Richard M. KREMER, Ryan G. QUARFOTH, Jack A. CROWELL, Mariano J. TABOADA, Joshua M. DORIA, Terry B. WELCH
  • Publication number: 20220365259
    Abstract: A photonic reflector device includes a first layer, a second layer, and a third layer. The first layer, which functions as a retro-reflector, is formed of a first material contacting a second material and having a non-planar interface therebetween. The second layer, which functions as a photonic crystal, includes third and fourth materials that have different refractive indices from one another and are configured such that the second layer has a periodic optical potential along at least one dimension. The third layer, which functions as a Lambertian scatterer, includes a plurality of inclusions in a first matrix material. In combination, the layers may be optimized to synergistically reflect targeted wavelengths and/or polarizations of light.
    Type: Application
    Filed: May 17, 2021
    Publication date: November 17, 2022
    Applicant: HRL Laboratories, LLC
    Inventors: Raymond SARKISSIAN, Phuong Phuc Nam BUI, Tobias Anton SCHAEDLER, Shanying CUI
  • Patent number: 11476467
    Abstract: The present invention provides a battery electrode comprising an active battery material enclosed in the pores of a conductive nanoporous scaffold. The pores in the scaffold constrain the dimensions for the active battery material and inhibit sintering, which results in better cycling stability, longer battery lifetime, and greater power through less agglomeration. Additionally, the scaffold forms electrically conducting pathways to the active battery nanoparticles that are dispersed. In some variations, a battery electrode of the invention includes an electrically conductive scaffold material with pores having at least one length dimension selected from about 0.5 nm to about 100 nm, and an oxide material contained within the pores, wherein the oxide material is electrochemically active.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 18, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, John J. Vajo, Ping Liu, Elena Sherman
  • Patent number: 11476555
    Abstract: Disclosed are electrochemically tunable metamaterials which are capable of complete reversibility such that the metamaterial itself can physically disappear (out of the active region) and reappear later, in a controllable manner. Some variations provide an electrochemically tunable, solid-state metamaterial-based device comprising a plurality of metamaterial unit cells, wherein each of the metamaterial unit cells comprises: an ion conductor containing mobile metal ions; a first electrode in contact with the ion conductor, wherein the first electrode is contained in a metasurface negative space disposed on the ion conductor; a second electrode in contact with the ion conductor, wherein the second electrode is electrically isolated from the first electrode; and a metal-containing region containing one or more metals, wherein the metal-containing region is contained within a metasurface positive space disposed on the ion conductor.
    Type: Grant
    Filed: July 27, 2019
    Date of Patent: October 18, 2022
    Assignee: HRL Laboratories, LLC
    Inventor: Christopher S. Roper
  • Patent number: 11460085
    Abstract: In at least one embodiment, a rotational spring is provided with adjustable stiffness and includes at least one beam arranged about an axis between an input tuning port and an output port, wherein the input tuning port is configured to change an effective bending length of at least one beam so as to change a shear stiffness with respect to the input tuning port and the output port.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: October 4, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew C. Keefe, Geoffrey P. McKnight, Sloan P. Smith, Christopher B. Churchill
  • Publication number: 20220308419
    Abstract: A solid state electrically variable focal length lens includes a plurality of concentric rings of electro-optical material, wherein the electro-optical material comprises any material of a class of hydrogen-doped phase-change metal oxide and wherein each respective concentric ring further includes a transparent resistive sheet on a first face of the respective concentric ring, wherein the transparent resistive sheet extends along the first face, and a first voltage coupled between a first end and a second end of the transparent resistive sheet, wherein the first voltage may be varied to select an optical beam deflection angle.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 29, 2022
    Applicant: HRL Laboratories, LLC
    Inventors: Richard KREMER, Kyung-Ah SON, Jeong-Sun MOON, Ryan G. QUARFOTH
  • Patent number: 11447656
    Abstract: An anti-fouling coating is provided, containing a continuous matrix comprising a first component; a plurality of inclusions comprising a second component, wherein the first component is a low-surface-energy polymer having a surface energy, and the second component is a hygroscopic material containing one or more ionic species. The low-surface-energy polymer and the hygroscopic material are chemically connected ionically or covalently, such as in a segmented copolymer composition comprising fluoropolymer soft segments and ionic species contained within the soft segments. The continuous matrix and the inclusions form a lubricating surface layer in the presence of humidity. Coefficient-of-friction experimental data is presented for various sample coatings. The incorporation of ionic species into the polymer chain backbone increases the hygroscopic behavior of the overall structure.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 20, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, Adam F. Gross, April R. Rodriguez, Ashley Nelson
  • Patent number: 11446735
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: September 20, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Tobias A. Schaedler, Brennan Yahata, Jacob M. Hundley, Jason A. Graetz, Adam F. Gross, William Carter
  • Patent number: 11440246
    Abstract: The present disclosure provides a methodology in which nanoparticle-coated microparticles are rapidly quality-checked for verification of surface functionalization of a commercial quantities of hierarchical powder. Some variations provide a method for inspecting surface-functionalized microparticles, comprising: selecting samples of hierarchical powders comprising microparticles and surface-coated nanoparticles; subjecting the hierarchical powders to a sample particle-size measurement; comparing the sample particle-size measurement to a baseline measurement; and determining the relative concentration of free nanoparticles, based on particle-size distributions. If the sample particle-size measurement is statistically equivalent to the baseline measurement, that is verification of complete surface functionalization.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 13, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Darby Laplant, John H. Martin, Jacob Hundley, Julie Miller, Zak Eckel
  • Patent number: 11434546
    Abstract: Some variations provide a metal matrix nanocomposite composition comprising metal-containing microparticles and nanoparticles, wherein the nanoparticles are chemically and/or physically disposed on surfaces of the microparticles, and wherein the nanoparticles are consolidated in a three-dimensional architecture throughout the composition. The composition may serve as an ingot for producing a metal matrix nanocomposite. Other variations provide a functionally graded metal matrix nanocomposite comprising a metal-matrix phase and a reinforcement phase containing nanoparticles, wherein the nanocomposite contains a gradient in concentration of the nanoparticles. This nanocomposite may be or be converted into a master alloy. Other variations provide methods of making a metal matrix nanocomposite, methods of making a functionally graded metal matrix nanocomposite, and methods of making a master alloy metal matrix nanocomposite. The metal matrix nanocomposite may have a cast microstructure.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: September 6, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Brennan D. Yahata, John H. Martin
  • Patent number: 11434171
    Abstract: Some variations provide a magnetically anisotropic structure comprising a magnetically anisotropic film on a substrate, wherein the magnetically anisotropic film contains a plurality of discrete magnetic hexaferrite particles, wherein the film is characterized by an average film thickness from 1 micron to 5 millimeters, and wherein the magnetically anisotropic film contains from 2 wt % to 75 wt % organic matter. Some variations provide a magnetically anisotropic structure comprising an out-of-plane magnetically anisotropic film on a substrate, wherein the magnetically anisotropic film contains a plurality of discrete magnetic hexaferrite particles, wherein the film is characterized by an average film thickness from 1 micron to 5 millimeters, and wherein the magnetically anisotropic film contains a concentration of hexaferrite particles of at least 40 vol %.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: September 6, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Xin N. Guan, Shanying Cui, Florian G. Herrault
  • Patent number: 11421179
    Abstract: Low-friction fluorinated coatings are disclosed herein. A preferred low-friction material contains a low-surface-energy fluoropolymer having a surface energy between about 5 mJ/m2 to about 50 mJ/m2, and a hygroscopic material that is covalently connected to the fluoropolymer in a triblock copolymer, such as PEG-PFPE-PEG. The material forms a lubricating surface layer in the presence of humidity. An exemplary copolymer comprises fluoropolymers with average molecular weight from 500 g/mol to 20,000 g/mol, wherein the fluoropolymers are (?,?)-hydroxyl-terminated and/or (?,?)-amine-terminated, and wherein the fluoropolymers are present in the triblock structure T-(CH2—CH2—O)—CH2—CF2—O—(CF2—CF2—O)m(CF2—O)n—CF2—CH2—(O—CH2—CH2)p-T where T is a hydroxyl or amine terminal group, p=1 to 50, m=1 to 100, and n=1 to 100. The copolymer also contains isocyanate species and polyol or polyamine chain extenders or crosslinkers possessing a functionality of preferably 3 or greater.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: August 23, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, Adam F. Gross, Elena Sherman
  • Patent number: 11421082
    Abstract: Some variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; and second repeat units comprising an organic, non-aromatic thiol molecule. Other variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; and second repeat units comprising an organic, non-aromatic unsaturated molecule, wherein the polysulfide-based copolymer has a total sulfur concentration of about 10 wt % or greater. Other variations provide a polysulfide-based copolymer containing first repeat units comprising S8-derived sulfur atoms bonded via sulfur-sulfur bonds; second repeat units comprising an organic, non-aromatic thiol molecule; and third repeat units comprising an organic, non-aromatic unsaturated molecule.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 23, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, Ashley M. Dustin, April R. Rodriguez, Kevin Drummey
  • Patent number: 11397282
    Abstract: Infrared-transparent and damage-resistant polymer optics with LWIR and/or MWIR transparency are provided. Some variations provide an optic containing at least 50 wt % of an infrared-transparent polymer, wherein the infrared-transparent polymer has a carbon-free polymer backbone, wherein the optic is characterized by at least 80% average transmission of radiation over a wavenumber band with cumulative wavenumber width of at least 1000 cm?1 contained within wavelengths from 3.1 ?m to 5 ?m and/or from 8.1 ?m to 12 ?m, and wherein the average transmission is defined as the percentage ratio of radiation intensity through an optic thickness of 25 microns divided by incident radiation intensity. Many polymer compositions and pendant groups are disclosed for use in the polymer optics.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 26, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Ashley M. Dustin, Andrew P. Nowak, April R. Rodriguez, Rajesh D. Rajavel, Jacob M. Hundley
  • Patent number: 11396607
    Abstract: This invention provides durable, low-ice-adhesion coatings with excellent performance in terms of ice-adhesion reduction. Some variations provide a low-ice-adhesion coating comprising a microstructure with a first-material phase and a second-material phase that are microphase-separated on an average length scale of phase inhomogeneity from 1 micron to 100 microns. Some variations provide a low-ice-adhesion material comprising a continuous matrix containing a first component; and a plurality of discrete inclusions containing a second component, wherein the inclusions are dispersed within the matrix to form a phase-separated microstructure that is inhomogeneous on an average length scale from 1 micron to 100 microns, wherein one of the first component or the second component is a low-surface-energy polymer, and the other is a hygroscopic material. The coatings are characterized by an AMIL Centrifuge Ice Adhesion Reduction Factor up to 100 or more.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: July 26, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Andrew P. Nowak, April R. Rodriguez, Elena Sherman, Adam F. Gross
  • Patent number: 11396687
    Abstract: Some variations provide a method of making an additively manufactured metal component, comprising: providing a feedstock that includes a high-vapor-pressure metal; exposing a first amount of the feedstock to an energy source for melting; and solidifying the melt layer, thereby generating a solid layer of an additively manufactured metal component. The metal-containing feedstock is enriched with a higher concentration of the high-vapor-pressure metal compared to its concentration in the additively manufactured metal component. The high-vapor-pressure metal may be selected from Mg, Zn, Li, Al, Cd, Hg, K, Na, Rb, Cs, Mn, Be, Ca, Sr, or Ba, for example. Additively manufactured metal components are provided.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: July 26, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Brennan D. Yahata
  • Patent number: 11390934
    Abstract: Some variations provide a metal matrix nanocomposite composition comprising metal-containing microparticles and nanoparticles, wherein the nanoparticles are chemically and/or physically disposed on surfaces of the microparticles, and wherein the nanoparticles are consolidated in a three-dimensional architecture throughout the composition. The composition may serve as an ingot for producing a metal matrix nanocomposite. Other variations provide a functionally graded metal matrix nanocomposite comprising a metal-matrix phase and a reinforcement phase containing nanoparticles, wherein the nanocomposite contains a gradient in concentration of the nanoparticles. This nanocomposite may be or be converted into a master alloy. Other variations provide methods of making a metal matrix nanocomposite, methods of making a functionally graded metal matrix nanocomposite, and methods of making a master alloy metal matrix nanocomposite. The metal matrix nanocomposite may have a cast microstructure.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 19, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Brennan D. Yahata
  • Patent number: 11369109
    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99 wt % of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: June 28, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Adam Gross, Andrew Nowak, Ashley Dustin, Jason Graetz, John Vajo
  • Patent number: 11374753
    Abstract: Described is a system for selective transparency in a public ledger. In operation, a first submission by a first entity is logged to the public ledger. The submission is a data entry with a message M and an identification number (ID). Separately, a linkage by a second entity is recorded. The linkage is an encryption and commitment linking the submission by the first entity to a second submission by the second entity. The linkage can be verified through a series of processes, such as by determining a value of linkage verification information. The value of the linkage verification information and corresponding block number is then transmitted to a third entity. The third entity reads the commitments from block Ni and verifies that the commitments are commitments to the same ID using the linkage verification information.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: June 28, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Joshua D. Lampkins, Hyun (Tiffany) J. Kim