Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for compensating for frequency-dependent I-Q imbalance. In some implementations, a radio receiver includes an in-phase mixer configured to generate an in-phase (I) signal and a quadrature mixer configured to generate a quadrature (Q) signal. A first analog-to-digital (A/D) converter is configured to generate first digital samples from one of the I signal and the Q signal. A second analog-to-digital (A/D) converter is configured to generate second digital samples from the other of the I signal and the Q signal. A compensation system includes a feedback loop configured to compensate for frequency-dependent I-Q imbalance based on results, for each of multiple of the first digital samples, of cross-correlation of the first digital sample with each of multiple of the second digital samples.
Abstract: A system and method for scheduling a variable stayout distance when beam hopping, the method including providing an illumination area of a satellite and candidate beam centers disposed in the illumination area; measuring a respective scan angle from an antenna boresight to a respective beam center of the candidate beam centers; and determining a reuse factor k for each of the candidate beam centers, based on a proportion of the respective scan angle to a maximum scan angle. Each candidate beam center may be processed sequentially. Prior to adding each candidate beam center to a current beam center set, checking whether a candidate beam center meets the stayout distance criteria from all beam centers already in the beam center set.
Type:
Grant
Filed:
December 30, 2019
Date of Patent:
April 19, 2022
Assignee:
Hughes Network Systems, LLC
Inventors:
Stanley Kay, Udaya Bhaskar, Neal David Becker
Abstract: Systems and methods implementing a satellite radio access network (SRAN) receiving a registration request from a user terminal (UT), determining a current tracking area (TA) of the UT, forwarding the registration request and the current TA to an access and mobility management function (AMF), and receiving a registration accept from the AMF that indicates a UT registration area. An implementation receives a UT page command from the AMF and, in response, determines a satellite beam for paging the UT, from among a plurality of satellite beams using the identifier of the current TA, and pages the UT on the satellite beam.
Abstract: A microstrip-to-waveguide transition includes a substrate and a waveguide. The substrate has a metal layer, a ground layer and a dielectric layer disposed between the metal layer and a ground layer. The substrate includes a microstrip line impedance transformer and a substrate integrated waveguide that is electromagnetically coupled to the microstrip line impedance transformer. The substrate integrated waveguide has a 90 degree substrate integrated waveguide bend section at an end portion thereof. The waveguide is arranged perpendicularly relative to the substrate. The waveguide is electromagnetically coupled to the substrate integrated waveguide at the 90 degree substrate integrated waveguide bend section. The microstrip-to-waveguide transition is free of a back-short at a location corresponding to the 90 degree substrate integrated waveguide bend section.
Abstract: A multilateration method basically includes receiving a signal strength indicator for at least one client wireless device from a plurality of access point devices, and calculating a position of the at least one client wireless device based on the signal strength indicator for the at least one client wireless device, prestored positions of the access point devices and a radio transmission parameter. The radio transmission parameter is obtained as a value that minimizes an error between a calculated position of at least one reference wireless device and a prestored position of the at least one reference wireless device.
Abstract: Various multi-processor unified memory management systems and methods are detailed herein. In embodiments detailed herein, inter-chip memory management modules may be executed by processors that are in communication via an inter-chip link. A flat memory map may be used across the multiple processors of the system. Each inter-chip memory management module may analyze memory transactions. If the memory transaction is directed to a portion of the flat memory map managed by another processor, the memory-transaction may be translated to a non-memory mapped transaction and transmitted via an inter-chip communication link.
Type:
Grant
Filed:
September 24, 2020
Date of Patent:
March 22, 2022
Assignee:
Hughes Network Systems, LLC
Inventors:
Gaurav Bhatia, Daniel C. Hantz, Ashish A. Varhale, Karan Kakkar, Yingquan Cheng, Yogesh Sethi
Abstract: A method and system for installing a terrestrial antenna for a satellite communication network. In the system and method, a remote unit is provided to an installation location for the terrestrial antenna. The remote unit is configured to communicate with a satellite of the satellite communication network and includes a memory in which is stored antenna information pertaining to positioning of the terrestrial antenna with respect to a virtual beam generated by the satellite. The information is accessible by a code. Thus, the antenna information is access from the memory at the installation location using the code, and the terrestrial antenna in relation to a virtual beam generated by the satellite based on the antenna information accessed from the memory at the installation location.
Type:
Grant
Filed:
September 20, 2019
Date of Patent:
March 22, 2022
Assignee:
HUGHES NETWORK SYSTEMS, LLC
Inventors:
Yeqing Tang, David Whitefield, Aniket Pugaonkar, Adam Axelrod, Archana Gharpuray
Abstract: A system for monitoring operational status and detecting faults in a satellite system is disclosed. The system may include a processor and a memory storing instructions, which when executed by the processor, cause the processor to select, from a plurality of terminals, a subset of terminals to perform system operation tests. The processor may select the subset of terminals using at least one of a semi-static pre-qualification technique and a dynamic pre-qualification technique. The processor may also perform system operation tests using the selected subset of terminals. The processor may further report results from the system operation test using the selected subset of terminals. In some examples, the processor may also determine potential system operation issues based on the results of the system operation tests, generate an alarm or notification based on the determination of potential system operation issues, and/or abort testing or delay testing to a future testing cycle.
Abstract: Systems and methods for ACM trajectory include receiving data at a communications receiver; decoding the received data based on a selected MODCOD; monitoring a number of iterations used to decode the data using the selected MODCOD; comparing the number of iterations used to decode the data using the first selected MODCOD to a reference number of iterations; and adjusting a SNR threshold value for the selected MODCOD where the number of iterations used to decode the data using the first selected MODCOD is greater than the reference number of iterations.
Abstract: A system and method for managing a transmit power of a terminal includes dividing a spectrum into frequency bins and an inroute layout including inroutes; mapping at least one of the frequency bins with each of the inroute; determining a respective normalized Transmit Power (TP) for each of the frequency bins; calculating a transmission TP based on the respective normalized TP of one or more of the frequency bins mapped to a selected inroute; and transmitting a radio signal with the transmission TP on the selected inroute. A first frequency bin is adjacent a second frequency bin, a respective normalized TP of the first frequency bin compared to a respective normalized TP of the second frequency bin varies no more than a threshold power delta, a count of frequency bins is greater than one and unequal to a count of the inroute layout.
Abstract: A system and method for beamforming beams including: matching weights T to a distribution of resources for each of the beams based on a traffic variation for each of the beams; calculating, with a signal processor for each of the beams based on the weights T, a power scalar ? and a weighted minimum mean squared error (WMMSE) matrix WWMSE; and transmitting/receiving the beams based on the power scalar ? and the WMMSE matrix WWMSE, where the power scalar ? satisfies a total power constraint of an antenna subsystem.
Type:
Application
Filed:
November 16, 2021
Publication date:
March 10, 2022
Applicant:
Hughes Network Systems, LLC
Inventors:
Udaya BHASKAR, Stanley KAY, Neal David BECKER
Abstract: Systems and methods are described, and one method includes receiving at a first network a request for a second network configuration data and an identifier of a first network home service plan of the mobile terminal, and transmitting to the second network an inter-network configuration data request. The inter-network configuration data request carries the request for the second network configuration data and an identifier of the mobile terminal's first network home service plan. The first network receives from the second network an inter-network configuration data response that carries the second network configuration data and, in response, transmits the second network configuration data to the mobile terminal.
Type:
Grant
Filed:
March 25, 2020
Date of Patent:
March 8, 2022
Assignee:
Hughes Network Systems, LLC
Inventors:
Rajeev Gautam Oza, George Joseph Choquette, Guy Bryan Montgomery, Suresh Kumar Korada
Abstract: A method and system for sharing frequency spectrum with multiple networks includes selecting a first geographical coverage area served by a first base station associated with a first network. The first base station is configured to utilize a predetermined frequency spectrum. A second base station, associated with a different network, that is operating within the first geographical coverage area is identified. Frequency resources from the predetermined are subsequently allocated to the second base station.
Abstract: A method of and system for designing a satellite network includes selecting an optimal design for a backhaul network to be used as part of the satellite network, selecting a number of radio frequency (RF) gateways for the satellite network, selecting an optimal number of satellite network cores (SNCs) for the satellite network. The method may also include placing each SNC at a site that is geographically separate from locations of the RF gateways, selecting a number of data centers for the satellite network, connecting each SNC to one or more data centers in the satellite network, and connecting each data center to one or more of the RF gateways via the backhaul network.
Type:
Grant
Filed:
December 31, 2019
Date of Patent:
March 8, 2022
Assignee:
Hughes Network Systems, LLC
Inventors:
David Whitefield, Gregory Marnte Presbury, Robert James Torres, Nimesh Prakash Ambeskar
Abstract: Systems and methods are described, and one method includes allocate a continuous duration within a TDMA scheme, for asynchronous NOMA transmissions, and extending from an allocation start time to an allocation termination time, formed of contiguous time slots of the TDMA scheme, and included providing to asynchronous NOMA user terminals an indication of the allocation start time and termination time, indicating allowance to perform asynchronous NOMA transmissions within a start time constraint that starts of the asynchronous NOMA transmissions do not precede the allocation start time, and terminations of the asynchronous NOMA transmissions do not succeed the allocation termination time.
Type:
Grant
Filed:
August 2, 2019
Date of Patent:
February 15, 2022
Assignee:
Hughes Network Systems, LLC.
Inventors:
Lin-Nan Lee, Neal D. Becker, Mustafa Eroz
Abstract: An apparatus and method for classifying traffic data in a communication network based on IP flow. Traffic data in a communication network is monitored in order to detect an IP flow. A preliminary classification is assigned to the IP flow based on protocol information contained in its first packet. Subsequent packets within the IP flow are further monitored, and the IP flow is reclassified based, in part, on the domain name of the responding server. Web pages can also be classified, and monitored to determine their response time.
Abstract: An integral waveguide device herein includes a polarizer component comprising a waveguide and a dielectric slab, the dielectric slab configured to change a polarization of a signal passing through the waveguide. The integral waveguide device also includes a feed horn for conveying signals between the waveguide and a parabolic antenna. The waveguide of the polarizer and the feed horn are manufactured as an integral component with the feed horn disposed at a first end of the waveguide.
Type:
Application
Filed:
July 30, 2021
Publication date:
February 3, 2022
Applicant:
HUGHES NETWORK SYSTEMS LLC
Inventors:
Peter HOU, Junyu SHEN, George EAPEN, Kunj DESAI, Peter MCLAREN
Abstract: A system is disclosed for providing low data rate broadcast services. Different types of broadcast packets are detected among data packets received an external network. The different types broadcast packets contain different a different broadcast content. When a particular type of broadcast packet is detected, a transmit data rate is selected and Walsh codes are assigned for achieving the transmit data rate. Data packets corresponding to the broadcast packets are compressed, and at least one RLC block containing the compressed data packets is created. The RLC blocks are transmitted from a satellite using the assigned Walsh codes.
Abstract: The present teachings include a method and computing apparatus for triggering synchronization of a satellite modem to a carrier frequency of a beam of a satellite, retrieving ephemeris information for the satellite and beam configuration information for the beam, calculating a velocity of the satellite per the ephemeris information, and adjusting the carrier frequency of the satellite modem when communicating via the beam to compensate for a doppler offset induced in the carrier frequency by the velocity. In the method, the satellite has a satellite type selected from a Geosynchronous Earth Orbit (GEO), Medium Earth Orbit (MEO) or Low Earth Orbit (LEO) type of satellite, and the satellite type is different than a satellite type of an immediately preceding synchronization.
Type:
Grant
Filed:
December 29, 2020
Date of Patent:
January 25, 2022
Assignee:
Hughes Network Systems, LLC
Inventors:
Guy Montgomery, George Choquette, Satyajit Roy
Abstract: A receiver and a method for receiving a radio communication is disclosed. The method includes receiving a burst encoded with a robust modulation coding scheme (MCS) as RX signals; generating, for each of the RX signals, a burst SNR, soft decision symbols and a packet; weighing, each of soft decision symbols with a respective burst SNR, to calculate soft combined symbols that are used to generate a Maximal-Ratio Combining (MRC) packet; and selecting, from the packets and the MRC packet, a CRC passed packet as an output. An adaptive dual burst transmitter is disclosed.
Type:
Application
Filed:
July 8, 2021
Publication date:
January 13, 2022
Applicant:
Hughes Network Systems, LLC
Inventors:
James Jehong JONG, Channasandra RAVISHANKAR, William WHITMARSH