Patents Assigned to Huntington Alloys Corporation
  • Publication number: 20090257908
    Abstract: A high temperature, high strength Ni—Co—Cr alloy possessing essentially fissure-free weldability for long-life service at 538° C. to 816° C. contains in % by weight about: 23.5 to 25.5% Cr, 15-22% Co, 1.1 to 2.0% Al, 1.0 to 1.8 % Ti, 0.95 to 2.2% Nb, less than 1.0% Mo, less than 1.0% Mn, less than 0.3% Si, less than 3% Fe, less than 0.3% Ta, less than 0.3% W, 0.005 to 0.08% C, 0.01 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, 0.005% to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities. The strength and stability is assured at 760° C. when the Al/Ti ratio is constrained to between 0.95 and 1.25. Further, the sum of Al+Ti is constrained to between 2.25 and 3.0. The upper limits for Nb and Si are defined by the relationship: (% Nb+0.95)+3.32(% Si)<3.16.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 15, 2009
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
  • Publication number: 20090038717
    Abstract: A Ni—Fe—Cr alloy having high strength, ductility and corrosion resistance especially for use in deep-drilled, corrosive oil and gas well environments, as well as for marine environments. The alloy comprises in weight %: 35-55% Ni, 12-25% Cr, 0.5-5% Mo, up to 3% Cu, 2.1-4.5% Nb, 0.5-3% Ti, up to 0.7% Al, 0.005-0.04% C, balance Fe plus incidental impurities and deoxidizers. The alloy must also satisfy the ratio of (Nb?7.75 C)/(Al+Ti)=0.5-9 in order to obtain the desired high strength by the formation of ?? and ?? phases. The alloy has a minimum of 1% by weight ?? phase dispersed in its matrix for strength purposes and a total weight percent of ??+?? phases being between 10 and 30.
    Type: Application
    Filed: July 21, 2008
    Publication date: February 12, 2009
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventors: Sarwan K. Mannan, Brett Clark Puckett
  • Publication number: 20080241580
    Abstract: An alloy for use as a welding overlay for boiler tubes in a low NOx coal-fired boiler comprising in % by weight: 36 to 43% Cr, 0.2 to 5.0% Fe, 0-2.0% Nb, 0-1% Mo, 0.3 to 1% Ti, 0.5 to 2% Al, 0.005 to 0.05% C, 0.005 to 0.020% (Mg+Ca), 0-1% Mn, 0-0.5% Si, less than 0.01% S, balance substantially Ni and trace additions and impurities. The alloy provides exceptional coal ash corrosion resistance in low partial pressures of oxygen. The alloy also increases in hardness and in thermal conductivity at service temperature over time. The increased hardness improves erosion resistance of the tubes while the increased thermal conductivity improves the thermal efficiency of the boiler and its power generation capabilities.
    Type: Application
    Filed: November 19, 2007
    Publication date: October 2, 2008
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventors: Samuel D. Kiser, Brian A. Baker
  • Patent number: 7416618
    Abstract: A Ni—Fe—Cr alloy having high strength, ductility and corrosion resistance especially for use in deep-drilled, corrosive oil and gas well environments, as well as for marine environments. The alloy comprises in weight %: 35-55% Ni, 12-25% Cr, 0.5-5% Mo, up to 3% Cu, 2.1-4.5% Nb, 0.5-3% Ti, up to 0.7% Al, 0.005-0.04% C, balance Fe plus incidental impurities and deoxidizers. The alloy must also satisfy the ratio of (Nb-7.75 C)/(Al+Ti)=0.5-9 in order to obtain the desired high strength by the formation of ?? and ?? phases. The alloy has a minimum of 1% by weight ?? phase dispersed in its matrix for strength purposes and a total weight percent of ??+?? phases being between 10 and 30.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 26, 2008
    Assignee: Huntington Alloys Corporation
    Inventors: Sarwan K. Mannan, Brett Clark Puckett
  • Publication number: 20080121629
    Abstract: A Ni—Cr—Fe alloy in the form of a weld deposit, a welding electrode and flux and a method of welding utilizing the Ni—Cr—Fe alloy. The alloy comprises in % by weight: 27-31 Cr, 6-11 Fe, 0.01-0.04 C, 1.5-4 Mn, 1-3 Nb, up to 3 Ta, 1-3 (Nb+Ta), 0.01-0.50 Ti, 0.0003-0.02 Zr, 0.0005-0.004 B, <0.50 Si, 0.50 max Al, <0.50 Cu, <1.0 W, <1.0 Mo, <0.12 Co, <0.015 S, <0.015 P, 0.01 max Mg, balance Ni plus incidental additions and impurities. The welding method includes welding using a short arc wherein the distance from the electrode tip to the weld deposit is maintained at less than 0.125 inch.
    Type: Application
    Filed: January 25, 2006
    Publication date: May 29, 2008
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventor: Samuel D. Kiser
  • Publication number: 20070258844
    Abstract: A corrosion resistant alloy is provided which includes, in percent by weight: (a) 16 to 24% Ni; (b) 18 to 26% Cr; (c) 1.5 to 3.5% Mo; (d) 0.5 to 1.5% Si; (e) 0.001 to 1.5% Nb; (f) 0.0005 to 0.5% Zr; (g) 0.01 to 0.6% N; (h) 0.001 to 0.2% Al; (j) less than 0.2% Ti; and (k) less than 1% Mn, trace impurities, and the balance Fe. Articles, such as flexible automotive exhaust couplings, including the present alloys are also provided.
    Type: Application
    Filed: April 23, 2007
    Publication date: November 8, 2007
    Applicant: Huntington Alloys Corporation
    Inventors: James Roy Crum, Nathan Charles Eisinger, Stephen Mark Gosnay, Gaylord Darrell Smith
  • Publication number: 20070102075
    Abstract: A Ni—Fe—Cr alloy having high strength, ductility and corrosion resistance especially for use in deep-drilled, corrosive oil and gas well environments, as well as for marine environments. The alloy comprises in weight %: 35-55% Ni, 12-25% Cr, 0.5-5% Mo, up to 3% Cu, 2.1-4.5% Nb, 0.5-3% Ti, up to 0.7% Al, 0.005-0.04% C, balance Fe plus incidental impurities and deoxidizers. The alloy must also satisfy the ratio of (Nb-7.75 C)/(Al+Ti)=0.5-9 in order to obtain the desired high strength by the formation of ?? and ?? phases. The alloy has a minimum of 1% by weight ?? phase dispersed in its matrix for strength purposes and a total weight percent of ??+?? phases being between 10 and 30.
    Type: Application
    Filed: November 7, 2005
    Publication date: May 10, 2007
    Applicant: Huntington Alloys Corporation
    Inventors: Sarwan Mannan, Brett Puckett
  • Patent number: 6918967
    Abstract: An austenitic alloy having improved ductility/processability and improved pitting and crevice corrosion resistance comprising, in % by weight, about: 25-30% Ni; 19-23% Cr; 6-8% Mo; 0.3-0.5% N; 0.5% Mn; 0-1.5% Cu; 0-0.2% C; 0-1% Al; 0-0.01% S; 0-1% Ti; 0-1% Si; up to trace amounts of Mg, Ca, and Ce; and balance Fe plus incidental impurities.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: July 19, 2005
    Assignee: Huntington Alloys Corporation
    Inventors: James R. Crum, Frances S. Suarez, Sarwan K. Mannan, Vernon W. Hartmann
  • Patent number: 6761854
    Abstract: A nickel-base alloy consisting of, in weight percent, 42 to 58 nickel, 21 to 28 chromium, 12 to 18 cobalt, 4 to 9.5 molybdenum, 2 to 3.5 aluminum, 0.05 to 2 titanium, at least one microalloying agent selected from the group consisting of 0.005 to 0.1 yttrium and 0.01 to 0.6 zirconium, 0.01 to 0.15 carbon, 0 to 0.01 boron, 0 to 4 iron, 0 to 1 manganese, 0 to 1 silicon, 0 to 1 hafnium, 0 to 0.4 niobium, 0 to 0.1 nitrogen, incidental impurities and deoxidizers.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: July 13, 2004
    Assignee: Huntington Alloys Corporation
    Inventors: Gaylord Darrell Smith, Curtis Steven Tassen