Patents Assigned to Hyperfine Operations, Inc.
-
Patent number: 11714151Abstract: Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.Type: GrantFiled: October 23, 2020Date of Patent: August 1, 2023Assignee: Hyperfine Operations, Inc.Inventors: Carole Lazarus, Rafael O'Halloran, Hadrien A. Dyvorne
-
Patent number: 11698430Abstract: Techniques for compensating for presence of eddy currents during the operation of a magnetic resonance imaging (MRI) system in accordance with a pulse sequence, the pulse sequence comprising a gradient waveform associated with a target gradient field. The techniques include: compensating for presence of eddy currents during operation of the MRI system at least in part by correcting the gradient waveform using a nonlinear function of a characteristic of the gradient waveform to obtain a corrected gradient waveform; and operating the MRI system in accordance with the corrected gradient waveform to generate the target gradient field.Type: GrantFiled: August 14, 2020Date of Patent: July 11, 2023Assignee: Hyperfine Operations, Inc.Inventors: Hadrien A. Dyvorne, Cedric Hugon, Rafael O'Halloran, Laura Sacolick
-
Patent number: 11686790Abstract: Provided herein are systems, devices, and methods to facilitate imaging an infant using a magnetic resonance imaging (MRI) device. A system for facilitating imaging an infant using an MRI device is provided herein, the system comprising a radio frequency (RF) coil assembly configured to be coupled to the MRI device and comprising a first RF coil configured to transmit RF signals during MRI and/or be responsive to MR signals generated during MRI and a helmet for supporting at least a portion of the infant's head, and an infant support to support at least a portion of the infant's body and configured to be coupled to the RF coil assembly. Further provided is an apparatus for coupling an infant support to an MRI device.Type: GrantFiled: May 1, 2020Date of Patent: June 27, 2023Assignee: Hyperfine Operations, Inc.Inventors: Gang Chen, Anne Michele Nelson, Jacob Coumans, Eddy B. Boskamp
-
Patent number: 11681000Abstract: Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques including: obtaining input MR data obtained by imaging the subject using the MRI system; generating a plurality of transformed input MR data instances by applying a respective first plurality of transformations to the input MR data; generating a plurality of MR images from the plurality of transformed input MR data instances and the input MR data using a non-linear MR image reconstruction technique; generating an ensembled MR image from the plurality of MR images at least in part by: applying a second plurality of transformations to the plurality of MR images to obtain a plurality of transformed MR images; and combining the plurality of transformed MR images to obtain the ensembled MR image; and outputting the ensembled MR image.Type: GrantFiled: September 17, 2021Date of Patent: June 20, 2023Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mohseni Salehi, Michal Sofka
-
Patent number: 11662412Abstract: According to some aspects, a method of suppressing noise in an environment of a magnetic resonance imaging system is provided. The method comprising estimating a transfer function based on multiple calibration measurements obtained from the environment by at least one primary coil and at least one auxiliary sensor, respectively, estimating noise present in a magnetic resonance signal received by the at least one primary coil based at least in part on the transfer function, and suppressing noise in the magnetic resonance signal using the noise estimate.Type: GrantFiled: December 2, 2021Date of Patent: May 30, 2023Assignee: Hyperfine Operations, Inc.Inventors: Todd Rearick, Gregory L. Charvat, Matthew Scot Rosen, Jonathan M. Rothberg
-
Patent number: 11662402Abstract: A radio-frequency (RF) coil for use in a low-field magnetic resonance imaging system and methods of making the same are provided. The RF coil may include a conductor arranged on a substrate in an arrangement such that symmetry in the arrangement cancels at least a portion of a common mode voltage when a current is passed through the conductor. The RF coil may be included in a magnetic resonance imaging (MRI) system for imaging a patient having at least one B0 magnet for generating a B0 magnetic field.Type: GrantFiled: February 23, 2021Date of Patent: May 30, 2023Assignee: Hyperfine Operations, Inc.Inventors: Hadrien A. Dyvorne, Todd Rearick
-
Publication number: 20230160988Abstract: A magnetic resonance imaging (MRI) system and method for acquiring magnetic resonance (MR) images using a pulse sequence implementing driven equilibrium and quadratic phase cycling techniques is provided. The method includes, during a pulse repetition period of a pulse sequence and using a quadratic phase cycling scheme, applying a first RF pulse to deflect a net magnetization vector associated with the subject from a longitudinal plane into a transverse plane; after applying the first RF pulse, applying a first sequence of RF pulses each of which flips the net magnetization vector by approximately 180 degrees within the transverse plane; and after applying the first sequence of RF pulses, applying a second RF pulse to deflect the net magnetization vector from the transverse plane to the longitudinal plane.Type: ApplicationFiled: January 19, 2023Publication date: May 25, 2023Applicant: Hyperfine Operations, Inc.Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus
-
Patent number: 11656308Abstract: An assembly for providing a B0 magnetic field for a magnetic resonance imaging (MRI) system, the assembly comprising: a plurality of rods extending along a common longitudinal direction and positioned to form a bore extending along the common longitudinal direction, the plurality of rods including a first rod, the first rod comprising: ferromagnetic segments, each having a net magnetization in a plane that is substantially perpendicular to the common longitudinal direction; and non-ferromagnetic segments.Type: GrantFiled: December 9, 2020Date of Patent: May 23, 2023Assignee: Hyperfine Operations, Inc.Inventors: Cedric Hugon, Michael Stephen Poole
-
Publication number: 20230095957Abstract: An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system. The apparatus includes at least one permanent B0 magnet to contribute a magnetic field to the Bo magnetic field for the MRI system and a ferromagnetic frame configured to capture and direct at least some of the magnetic field generated by the B0 magnet. The ferromagnetic frame includes a first post having a first end and a second end, a first multi-pronged member coupled to the first end, and a second multi-pronged member coupled to the second end, wherein the first and second multi-pronged members support the at least one permanent B0 magnet.Type: ApplicationFiled: August 9, 2022Publication date: March 30, 2023Applicant: Hyperfine Operations, Inc.Inventors: Cedric Hugon, Hadrien A. Dyvorne, Michael Stephen Poole
-
Patent number: 11614505Abstract: According to some aspects, an apparatus is provided comprising a deployable guard device, configured to be coupled to a portable medical imaging device, the deployable guard device further configured to, when deployed, inhibit encroachment within a physical boundary with respect to the portable medical imaging device. According to some aspects, an apparatus is provided comprising a deployable guard device, configured to be coupled to a portable magnetic resonance imaging system, the deployable guard device further configured to, when deployed, demarcate a boundary within which a magnetic field strength of a magnetic field generated by the portable magnetic resonance imaging system equals or exceeds a given threshold.Type: GrantFiled: December 15, 2021Date of Patent: March 28, 2023Assignee: Hyperfine Operations, Inc.Inventors: Christopher Thomas McNulty, Michael Stephen Poole
-
Patent number: 11607148Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one BO magnet to produce a magnetic field to contribute to a BO magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.Type: GrantFiled: December 15, 2021Date of Patent: March 21, 2023Assignee: Hyperfine Operations, Inc.Inventors: Anne Michele Nelson, Christopher Thomas McNulty, Jeremy Christopher Jordan, Michael Stephen Poole, Gang Chen
-
Patent number: 11573282Abstract: Techniques for compensating magnetic resonance imaging (MRI) data for artefacts caused by motion of a subject being imaged. The techniques include obtaining spatial frequency data obtained by using a magnetic resonance imaging (MRI) system to perform MRI on a patient, the spatial frequency data including first spatial frequency data and second spatial frequency data; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; determining a residual spatial phase; correcting, using the transformation, second spatial frequency data and the residual spatial phase, to obtain corrected second spatial frequency data and a corrected residual spatial phase; and generating a magnetic resonance (MR) image using the corrected second spatial frequency data and the corrected residual spatial phase.Type: GrantFiled: October 23, 2020Date of Patent: February 7, 2023Assignee: Hyperfine Operations, Inc.Inventor: Carole Lazarus
-
Patent number: 11564590Abstract: Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques include: obtaining input MR spatial frequency data obtained by imaging the subject using the MRI system; generating an MR image of the subject from the input MR spatial frequency data using a neural network model comprising: a pre-reconstruction neural network configured to process the input MR spatial frequency data; a reconstruction neural network configured to generate at least one initial image of the subject from output of the pre-reconstruction neural network; and a post-reconstruction neural network configured to generate the MR image of the subject from the at least one initial image of the subject.Type: GrantFiled: March 12, 2020Date of Patent: January 31, 2023Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mohseni Salehi, Michal Sofka, Prantik Kundu, Carole Lazarus, Hadrien A. Dyvorne, Rafael O'Halloran, Laura Sacolick
-
Patent number: 11561272Abstract: A magnetic resonance imaging (MRI) system and method for acquiring magnetic resonance (MR) images using a pulse sequence implementing driven equilibrium and quadratic phase cycling techniques is provided. The method includes, during a pulse repetition period of a pulse sequence and using a quadratic phase cycling scheme, applying a first RF pulse to deflect a net magnetization vector associated with the subject from a longitudinal plane into a transverse plane; after applying the first RF pulse, applying a first sequence of RF pulses each of which flips the net magnetization vector by approximately 180 degrees within the transverse plane; and after applying the first sequence of RF pulses, applying a second RF pulse to deflect the net magnetization vector from the transverse plane to the longitudinal plane.Type: GrantFiled: May 28, 2021Date of Patent: January 24, 2023Assignee: Hyperfine Operations, Inc.Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus
-
Patent number: 11553853Abstract: According to some aspects, a system configured to facilitate imaging an infant using a magnetic resonance imaging (MRI) device is provided herein. The system comprises an infant-carrying apparatus comprising an infant support configured to support the infant and an isolette for positioning the infant relative to the MRI device, the isolette comprising: a base for supporting the infant-carrying apparatus; and a bottom surface configured to be coupled to the MRI device. In some embodiments, the infant-carrying apparatus further comprises at least one radio frequency (RF) coil coupled to the infant support and configured to be coupled to the MRI device to detect MR signals during imaging performed by the MRI device. A method for positioning an infant relative to an MRI device using an infant-carrying apparatus and isolette is further provided herein.Type: GrantFiled: March 11, 2020Date of Patent: January 17, 2023Assignee: Hyperfine Operations, Inc.Inventors: Jacobus Coumans, Christopher Thomas McNulty
-
Patent number: 11510588Abstract: Techniques for suppressing noise in an environment of a magnetic resonance (MR) imaging system having at least one primary coil and at least one auxiliary sensor. The techniques involve estimating a transform, that, when applied to noise received by the at least one auxiliary sensor, provides an estimate of noise received by the at least one primary coil. The transform is estimated from data obtained by the at least one primary coil and the least one auxiliary sensor, with the data being weighted prior to estimation to remove or suppress data in regions with a high signal to noise ratio. In turn, the estimated transform may be applied to noise measured by the at least one auxiliary sensor during imaging of a patient, to estimate and suppress noise present in the MR signals received by the at least one primary coil during imaging.Type: GrantFiled: November 19, 2020Date of Patent: November 29, 2022Assignee: Hyperfine Operations, Inc.Inventors: Laura Sacolick, Hadrien A. Dyvorne
-
Publication number: 20220349975Abstract: In some aspects, a magnetic system for use in a low-field MRI system. The magnetic system comprises at least one electromagnet configured to, when operated, generate a magnetic field to contribute to a B0 field for the low-field MRI system, and at least one permanent magnet to produce a magnetic field to contribute to the B0 field.Type: ApplicationFiled: July 19, 2022Publication date: November 3, 2022Applicant: Hyperfine Operations, Inc.Inventors: Michael Stephen Poole, Todd Rearick, Jonathan M. Rothberg
-
Patent number: 11467239Abstract: A magnetic resonance imaging (MRI) system, comprising: a magnetics system comprising: a B0 magnet configured to provide a B0 field for the MRI system; gradient coils configured to provide gradient fields for the MRI system; and at least one RF coil configured to detect magnetic resonance (MR) signals; and a controller configured to: control the magnetics system to acquire MR spatial frequency data using non-Cartesian sampling; and generate an MR image from the acquired MR spatial frequency data using a neural network model comprising one or more neural network blocks including a first neural network block, wherein the first neural network block is configured to perform data consistency processing using a non-uniform Fourier transformation.Type: GrantFiled: July 29, 2019Date of Patent: October 11, 2022Assignee: Hyperfine Operations, Inc.Inventors: Jo Schlemper, Seyed Sadegh Mosheni Salehi, Michal Sofka, Prantik Kundu, Ziyi Wang, Carole Lazarus, Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Jonathan M. Rothberg
-
Publication number: 20220283253Abstract: Techniques are provided for imaging a subject. The method may comprise receiving an indication to image the subject using an magnetic resonance imaging (MRI) system, and in response to receiving the indication, with at least one controller: generating, using at least one RF coil, an initial MR data set for generating an initial image of the subject; determining, using the initial MR image, a difference in orientation between a current orientation of the subject in the initial MR image and a target orientation of the subject; determining, using the determined difference in orientation, an adjustment to a gradient pulse sequence for controlling at least one gradient coil; applying the determined adjustment to the gradient pulse sequence to obtain an adjusted gradient pulse sequence; generating an adjusted MR data set using the adjusted gradient pulse sequence; and generating a second MR image of the subject using the adjusted MR data set.Type: ApplicationFiled: March 4, 2022Publication date: September 8, 2022Applicant: Hyperfine Operations, Inc.Inventors: Laura Sacolick, Rafael O'Halloran, Hadrien A. Dyvorne, Khan Mohammad Siddiqui, Michal Sofka, Prantik Kundu, Tianrui Luo
-
Patent number: 11422213Abstract: An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system. The apparatus includes at least one permanent B0 magnet to contribute a magnetic field to the B0 magnetic field for the MRI system and a ferromagnetic frame configured to capture and direct at least some of the magnetic field generated by the B0 magnet. The ferromagnetic frame includes a first post having a first end and a second end, a first multi-pronged member coupled to the first end, and a second multi-pronged member coupled to the second end, wherein the first and second multi-pronged members support the at least one permanent B0 magnet.Type: GrantFiled: December 9, 2020Date of Patent: August 23, 2022Assignee: Hyperfine Operations, Inc.Inventors: Cedric Hugon, Hadrien A. Dyvorne, Michael Stephen Poole