Patents Assigned to IBC Pharmaceuticals, Inc.
  • Patent number: 9617531
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: April 11, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 9550838
    Abstract: Disclosed herein are methods and compositions dock and lock (DNL) complexes comprising an AD moiety selected from an AKAP protein and a DDD moiety selected from a protein kinase A regulatory subunit. Also disclosed are fusion proteins comprising an AD moiety or DDD moiety attached to an effector moiety. The DDD moieties form dimers that bind to the AD moiety to form the DNL complexes. The effector moieties may be selected from a wide range of known effector moieties that produce one or more physiological effects, including but not limited to cell death. The DNL complexes may further comprise one or more diagnostic and/or therapeutic agents. The DNL complexes are of use for treating and/or diagnosing a variety of diseases or conditions.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 24, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9540618
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: January 10, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 9540435
    Abstract: The present invention concerns stably tethered structures of defined compositions with multiple functionalities and/or binding specificities. Particular embodiments concern stably tethered structures comprising a homodimer of a first monomer, comprising a dimerization and docking domain attached to a first precursor, and a second monomer comprising an anchoring domain attached to a second precursor. The first and second precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: January 10, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 9492561
    Abstract: Described herein are compositions and methods of use of targeted delivery complexes for delivery of siRNA to a disease-associated cell, tissue or pathogen. The targeted delivery complex comprises a targeting molecule, such as an antibody or fragment thereof, conjugated to one or more siRNA carriers. In preferred embodiments the siRNA carrier is a dendrimer or protamine and the targeting molecule is an anti-cancer antibody, such as hRS7. More preferably, the antibody or fragment is rapidly internalized into the target cell to facilitate uptake of the siRNA. Most preferably, the targeted delivery complex is made by the DNL technique. The compositions and methods are of use to treat a variety of disease states, such as cancer, autoimmune disease, immune dysfunction, cardiac disease, neurologic disease, inflammatory disease or infectious disease.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: November 15, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9481878
    Abstract: The present invention concerns methods and compositions for forming immunotoxin complexes having a high efficacy and low systemic toxicity. In preferred embodiments, the toxin moiety is a ranpirnase (Rap), such as Rap(Q). In more preferred embodiments, the immunotoxin is made using dock-and-lock (DNL) technology. The immunotoxin exhibits improved pharmacokinetics, with a longer serum half-life and significantly greater efficacy compared to toxin alone, antibody alone, unconjugated toxin plus antibody or even other types of toxin-antibody constructs. In a most preferred embodiment the construct comprises an anti-Trop-2 antibody conjugated to Rap, although other combinations of antibodies, antibody fragments and toxins may be used to form the subject immunotoxins. The immunotoxins are of use to treat a variety of diseases, such as cancer, autoimmune disease or immune dysfunction.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: November 1, 2016
    Assignees: Immunomedics, Inc., IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 9457100
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a target agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: October 4, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 9457072
    Abstract: The present invention concerns methods and compositions for forming anti-cancer vaccine DNL complexes using dock-and-lock technology. In preferred embodiments, the anti-cancer vaccine DNL complex comprises an antibody moiety that binds to dendritic cells, such as an anti-CD74 antibody or antigen-binding fragment thereof, attached to an AD (anchoring domain) moiety and a xenoantigen, such as CD20, attached to a DDD (dimerization and docking domain) moiety, wherein two copies of the DDD moiety form a dimer that binds to the AD moiety, resulting in the formation of the DNL complex. The anti-cancer vaccine DNL complex is capable of inducing an immune response against xenoantigen expressing cancer cells, such as CD138negCD20+ MM stem cells, and inducing apoptosis of and inhibiting the growth of or eliminating the cancer cells.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: October 4, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9446123
    Abstract: The present invention concerns multimeric complexes based on antibody fusion proteins comprising an AD moiety attached to the C-terminal end of each antibody light chain. The complexes further comprise effector moities attached to DDD moieties. Two copies of the DDD moiety form a dimer that binds to the AD moiety. The complexes may be trimers, pentamers, hexamers or other multimers. The effector moieties may be selected from a second antibody or antigen-binding fragment thereof, a cytokine, an interferon, a toxin, an antigen, a xenoantigen, a hapten, a protamine, a hormone, an enzyme, a ligand-binding protein, a pro-apoptotic agent and an anti-angiogenic agent. Surprisingly, attachment of the AD moiety to the C-terminal end of the antibody light chain results in improved pharmacokinetics and in vivo stability and efficacy, compared to homologous complexes wherein the AD moiety is attached to the antibody heavy chain.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: September 20, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Edmund A. Rossi, Chien-Hsing Chang, David M. Goldenberg
  • Publication number: 20160257947
    Abstract: The present invention concerns methods and compositions for forming immunotoxin complexes having a high efficacy and low systemic toxicity. In preferred embodiments, the toxin moiety is a ranpirnase (Rap), such as Rap(Q). In more preferred embodiments, the immunotoxin is made using dock-and-lock (DNL) technology. The immunotoxin exhibits improved pharmacokinetics, with a longer serum half-life and significantly greater efficacy compared to toxin alone, antibody alone, unconjugated toxin plus antibody or even other types of toxin-antibody constructs. In a most preferred embodiment the construct comprises an anti-Trop-2 antibody conjugated to Rap, although other combinations of antibodies, antibody fragments and toxins may be used to form the subject immunotoxins. The immunotoxins are of use to treat a variety of diseases, such as cancer, autoimmune disease or immune dysfunction.
    Type: Application
    Filed: September 4, 2013
    Publication date: September 8, 2016
    Applicants: IBC PHARMACEUTICALS, INC., IMMUNOMEDICS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 9416197
    Abstract: The present invention concerns compositions and methods of use of bispecific antibodies comprising at least one anti-TNF-? antibody or antigen-binding fragment thereof and at least one anti-IL-6 antibody or antigen-binding fragment thereof. Preferably, the bispecific antibody is in the form of a DNL® complex. The anti-TNF-? or anti-IL-6 antibodies may comprise specific CDR sequences disclosed herein. The compositions and methods are of use to treat autoimmune disease, immune system dysfunction or inflammatory disease, as disclosed herein.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: August 16, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: David M. Goldenberg, Rongxiu Li, Chien-Hsing Chang
  • Patent number: 9382329
    Abstract: The present invention concerns compositions and methods of use of bispecific antibodies comprising at least one binding site for Trop-2 (EGP-1) and at least one binding site for CD3. The bispecific antibodies are of use for inducing an immune response against a Trop-2 expressing tumor, such as carcinoma of the esophagus, pancreas, lung, stomach, colon, rectum, urinary bladder, breast, ovary, uterus, kidney or prostate. The methods may comprising administering the bispecific antibody alone, or with one or more therapeutic agents such as antibody-drug conjugates, interferons (preferably interferon-?), and/or checkpoint inhibitor antibodies. The bispecific antibody is capable of targeting effector T cells, NK cells, monocytes or neutrophils to induce leukocyte-mediated cytotoxicity of Trop-2+ cancer cells. The cytotoxic immune response is enhanced by co-administration of interferon, checkpoint inhibitor antibody and/or ADC.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: July 5, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Patent number: 9359443
    Abstract: Disclosed are compositions and methods comprising combinations of anti-CD74 and anti-CD20 antibodies or antigen-binding fragments thereof. The antibody combination may also be used with a therapeutic agent that is attached to antibody or fragment thereof or separately administered. The therapeutic agent may be an immunomodulator, a cytokine, a toxin or other known therapeutic agent. Preferably, the anti-CD74 and anti-CD20 antibody or fragment are part of a DNL complex. More preferably, combination therapy with the anti-CD74 and anti-CD20 antibody or fragment is more effective than either antibody alone, or the combination of unconjugated antibodies. Administration of combination induces apoptosis of target cells in diseases in which CD74 is overexpressed, such as solid tumors, B-cell lymphomas or leukemias, autoimmune disease, immune dysfunction disease or diabetes. Preferably, the target cells are B cells.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: June 7, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 9315567
    Abstract: The present invention concerns compositions and methods of use of T-cell redirecting complexes, with at least one binding site for a T-cell antigen and at least one binding site for an antigen on a diseased cell or pathogen. Preferably, the complex is a DNL™ complex. More preferably, the complex comprises a bispecific antibody (bsAb). Most preferably, the bsAb is an anti-CD3×anti-CD19 bispecific antibody, although antibodies against other T-cell antigens and/or disease-associated antigens may be used. The complex is capable of targeting effector T cells to induce T-cell-mediated cytotoxicity of cells associated with a disease, such as cancer, autoimmune disease or infectious disease. The cytotoxic immune response is enhanced by co-administration of interferon-based agents that comprise interferon-?, interferon-?, interferon-?1, interferon-?2 or interferon-?3.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: April 19, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Patent number: 9272029
    Abstract: The present invention concerns methods and compositions for forming complexes of interferon-? with an antibody or antigen-binding antibody fragment. In preferred embodiments, the interferon-? and the antibody or fragment are fusion proteins, each comprising a dimerization and docking domain (DDD) moiety from human protein kinase A or an anchor domain (AD) moiety from an A-kinase anchoring protein (AKAP). In more preferred embodiments, the interferon-antibody complex is more efficacious for treatment of cancer, asthma, Alzheimer's disease, multiple sclerosis or viral infection than interferon-? alone, antibody alone, or the combination of unconjugated interferon-? and antibody.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 1, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Donglin Liu
  • Patent number: 9248184
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection in a subject, utilizing a DNL® complex comprising at least one anti-HIV therapeutic agent, attached to an antibody, antibody fragment or PEG. In a preferred embodiment, the antibody or fragment binds to an antigen selected from gp120, gp41, CD4 and CCR5. In a more preferred embodiment the antibody is P4/D10 or 2G12, although other anti-HIV antibodies are known and may be utilized. In a most preferred embodiment, the anti-HIV therapeutic agent is a fusion inhibitor, such as T20, T61, T651, T1249, T2635, CP32M or T-1444, although other anti-HIV therapeutic agents are known and may be utilized. The DNL® complex may be administered alone or may be co-administered with one or more additional anti-HIV therapeutic agents.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 2, 2016
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9169470
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 27, 2015
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20150023870
    Abstract: Disclosed herein are compositions and methods of use comprising hexavalent DNL complexes. Preferably, the complexes comprise anti-CD20 and/or anti-CD22 antibodies or fragments thereof. More preferably, the anti-CD20 antibody is veltuzumab and the anti-CD22 antibody is epratuzumab. Administration of the subject hexavalent DNL complexes induces apoptosis and cell death of target cells in diseases such as B-cell lymphomas or leukemias, autoimmune disease or immune dysfunction disease. In most preferred embodiments, the DNL complexes increase levels of phosphorylated p38 and PTEN, decrease levels of phosphorylated Lyn, Akt, ERK, IKK?/? and I?B?, increase expression of RKIP and Bax and decrease expression of Mcl-1, Bcl-xL, Bcl-2, and phospho-BAD in target cells. The subject DNL complexes show EC50 values for inhibiting tumor cell growth in the low nanomolar or even sub-nanomolar concentration range.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 22, 2015
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8932593
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: January 13, 2015
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8906378
    Abstract: Disclosed are compositions and methods comprising combinations of anti-CD74 antibodies with a therapeutic agent that is attached to the anti-CD74 antibody or separately administered. Preferably, the therapeutic agent is an antibody that binds to an antigen different from CD74, such as CD19, CD20, CD21, CD22, CD23, CD37, CD40, CD40L, CD52, CD80, IL-6, CXCR4 or HLA-DR. However, the therapeutic agent may be an immunomodulator, a cytokine, a toxin or other known therapeutic agent. Preferably, the anti-CD74 antibody is part of a DNL complex. More preferably, combination therapy with the anti-CD74 antibody and therapeutic agent is more effective than antibody alone, therapeutic agent alone, or the combination of unconjugated anti-CD74 antibody and therapeutic agent. Administration of combination induces apoptosis of target cells in diseases in which CD74 is overexpressed, such as solid tumors, B-cell lymphomas or leukemias, autoimmune disease, immune dysfunction disease or diabetes.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: December 9, 2014
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi