Patents Assigned to IBC Pharmaceuticals, Inc.
  • Publication number: 20130164816
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Application
    Filed: July 16, 2012
    Publication date: June 27, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20130136718
    Abstract: The present invention concerns methods and compositions for forming complexes of interferon-? with an antibody or antigen-binding antibody fragment. In preferred embodiments, the interferon-? and the antibody or fragment are fusion proteins, each comprising a dimerization and docking domain (DDD) moiety from human protein kinase A or an anchor domain (AD) moiety from an A-kinase anchoring protein (AKAP). In more preferred embodiments, the interferon-antibody complex is more efficacious for treatment of cancer, asthma, Alzheimer's disease, multiple sclerosis or viral infection than interferon-? alone, antibody alone, or the combination of unconjugated interferon-? and antibody.
    Type: Application
    Filed: January 25, 2013
    Publication date: May 30, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventor: IBC PHARMACEUTICALS, INC.
  • Patent number: 8435540
    Abstract: The present invention concerns methods and compositions for PEGylated complexes of defined stoichiometry and structure. Preferably, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and a PEG moiety to an AD sequence, allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two therapeutic agents and one PEG moiety. Alternatively, the therapeutic agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one therapeutic agent. In more preferred embodiments, the therapeutic agent may comprise any peptide or protein of physiologic or therapeutic activity, preferably a cytokine, more preferably interferon-?2b. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 7, 2013
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20130109073
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Application
    Filed: September 5, 2012
    Publication date: May 2, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20130095033
    Abstract: The present invention concerns methods and compositions comprising an anti-IGF-1R antibody or fragment thereof for treatment of cancer or autoimmune disease. Preferably, the cancer is renal cell carcinoma, breast cancer or pancreatic cancer. The anti-IGF-1R antibody or fragment may be part of a complex, such as a DOCK-AND-LOCK™ (DNL™) complex. Preferably, the DNL™ complex also comprises a second antibody, a second antibody fragment, an affibody or a cytokine. More preferably, the cytokine is interferon-?2b. Most preferably, the second antibody, second fragment or affibody binds to IGF-1R, TROP2 or CEACAM6. The anti-IGF-1R antibody or complex may be administered alone or in combination with a therapeutic agent, such as an mTOR inhibitor.
    Type: Application
    Filed: November 29, 2012
    Publication date: April 18, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventor: IBC Pharmaceuticals, Inc.
  • Publication number: 20130078183
    Abstract: Disclosed herein are compositions and methods of use comprising hexavalent DNL complexes. Preferably, the complexes comprise anti-CD20 and/or anti-CD22 antibodies or fragments thereof. More preferably, the anti-CD20 antibody is veltuzumab and the anti-CD22 antibody is epratuzumab. Administration of the subject hexavalent DNL complexes induces apoptosis and cell death of target cells in diseases such as B-cell lymphomas or leukemias, autoimmune disease or immune dysfunction disease. In most preferred embodiments, the DNL complexes increase levels of phosphorylated p38 and PTEN, decrease levels of phosphorylated Lyn, Akt, ERK, IKK?/? and I?B?, increase expression of RKIP and Bax and decrease expression of Mcl-1, Bcl-xL, Bcl-2, and phospho-BAD in target cells. The subject DNL complexes show EC50 values for inhibiting tumor cell growth in the low nanomolar or even sub-nanomolar concentration range.
    Type: Application
    Filed: November 5, 2012
    Publication date: March 28, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventor: IBC Pharmaceuticals, Inc.
  • Patent number: 8349332
    Abstract: Disclosed herein are compositions and methods of use comprising hexavalent DNL complexes. Preferably, the complexes comprise anti-CD20 and/or anti-CD22 antibodies or fragments thereof. More preferably, the anti-CD20 antibody is veltuzumab and the anti-CD22 antibody is epratuzumab. Administration of the subject hexavalent DNL complexes induces apoptosis and cell death of target cells in diseases such as B-cell lymphomas or leukemias, autoimmune disease or immune dysfunction disease. In most preferred embodiments, the DNL complexes increase levels of phosphorylated p38 and PTEN, decrease levels of phosphorylated Lyn, Akt, ERK, IKK?/? and I?B?, increase expression of RKIP and Bax and decrease expression of Mcl-1, Bcl-xL, Bcl-2, and phospho-BAD in target cells. The subject DNL complexes show EC50 values for inhibiting tumor cell growth in the low nanomolar or even sub-nanomolar concentration range.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: January 8, 2013
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20120276100
    Abstract: The present invention concerns methods and compositions for forming immunotoxin complexes having a high efficacy and low systemic toxicity. In preferred embodiments, the toxin moiety is a ranpirnase (Rap), such as Rap(Q). In more preferred embodiments, the immunotoxin is made using dock-and-lock (DNL) technology. The immunotoxin exhibits improved pharmacokinetics, with a longer serum half-life and significantly greater efficacy compared to toxin alone, antibody alone, unconjugated toxin plus antibody or even other types of toxin-antibody constructs. In a most preferred embodiment the construct comprises an anti-Trop-2 or anti-CD22 antibody conjugated to Rap, although other combinations of antibodies, antibody fragments and toxins may be used to form the subject immunotoxins. The immunotoxins are of use to treat a variety of diseases, such as cancer, autoimmune disease or immune dysfunction.
    Type: Application
    Filed: June 20, 2012
    Publication date: November 1, 2012
    Applicants: IBC PHARMACEUTICALS, INC., IMMUNOMEDICS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20120276608
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.
    Type: Application
    Filed: May 30, 2012
    Publication date: November 1, 2012
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8282934
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 9, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8277817
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a target agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 2, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20120237442
    Abstract: The present invention concerns compositions and use of multivalent and/or multispecific antibodies or immunoconjugates, preferably made by the dock-and-lock technique. The antibodies or immunoconjugates may comprise a first and second polypeptide, each comprising VH and VL domains in series, wherein the first and second polypeptides bind to each other, wherein a VH domain on one polypeptide binds to a complementary VL domain on the other polypeptide to form an antigen binding site, wherein VH and VL domains on the same polypeptide do not bind to each other and wherein one polypeptide is attached to the amino terminal end of a CH1 domain and the other polypeptide is attached to the amino terminal end of a CL domain. The carboxyl terminal end of the CH1 domain may be attached to a CH2-CH3 domain. The antibodies or immunoconjugates are of use to treat a wide variety of diseases.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 20, 2012
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Edmund A. Rossi, David M. Goldenberg, Chien-Hsing Chang
  • Publication number: 20120225032
    Abstract: The present invention concerns methods and compositions for PEGylated complexes of defined stoichiometry and structure. Preferably, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and a PEG moiety to an AD sequence, allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two therapeutic agents and one PEG moiety. Alternatively, the therapeutic agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one therapeutic agent. In more preferred embodiments, the therapeutic agent may comprise any peptide or protein of physiologic or therapeutic activity, preferably a cytokine, more preferably interferon-?2b. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 6, 2012
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8246960
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: August 21, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20120196346
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Application
    Filed: March 14, 2012
    Publication date: August 2, 2012
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8211440
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 3, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8163291
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 24, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20120093769
    Abstract: Disclosed herein are compositions and methods of use of dock and lock (DNL) complexes comprising a first antibody or fragment that binds to a stem cell antigen and a second antibody or fragment thereof that binds to an antigen on a diseased or damaged tissue or organ. The DNL complexes are of use for targeting stem cells to diseased or damaged organs or tissues and may be used to treat a variety of diseases or conditions that are responsive to stem cell therapy.
    Type: Application
    Filed: November 14, 2011
    Publication date: April 19, 2012
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 8158129
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two therapeutic agents and one PEG moiety. In alternative embodiments, the therapeutic agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one therapeutic agent. In more preferred embodiments, the therapeutic agent may comprise any peptide or protein of physiologic or therapeutic activity, preferably a cytokine, more preferably interferon-?2b. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: April 17, 2012
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20120082685
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection in a subject, utilizing a DNL complex comprising at least one anti-HIV therapeutic agent, attached to an antibody, antibody fragment or PEG. In a preferred embodiment, the antibody or fragment binds to an antigen selected from gp120, gp41, CD4 and CCR5. In a more preferred embodiment the antibody is P4/D10 or 2G12, although other anti-HIV antibodies are known and may be utilized. In a most preferred embodiment, the anti-HIV therapeutic agent is a fusion inhibitor, such as T20, T61, T651, T1249, T2635, CP32M or T-1444, although other anti-HIV therapeutic agents are known and may be utilized. The DNL complex may be administered alone or may be co-administered with one or more additional anti-HIV therapeutic agents.
    Type: Application
    Filed: November 3, 2011
    Publication date: April 5, 2012
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg