Patents Assigned to Infinera Corporation
  • Patent number: 11803021
    Abstract: Opto-electronic packages and methods for making opto-electronic packages are disclosed, including a method comprising forming an opto-electronic circuit on a first surface of a substrate of a lower package assembly, the first surface of the substrate having a first bonding pattern configured to provide a hermetic seal, the first bonding pattern extending around the opto-electronic circuit; positioning a bottom of a ring frame onto the first bonding pattern so as to surround the opto-electronic circuit with the ring frame; hermetically sealing a bottom of the ring frame to the first bonding pattern of the first surface of the substrate of the lower package assembly subsequent to the formation of the opto-electronic circuit on the first surface of the substrate; and hermetically sealing a top of the ring frame to form a hermetically sealed opto-electronic package.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: October 31, 2023
    Assignee: Infinera Corporation
    Inventors: Franklin Wall, Jr., John Osenbach, Jiaming Zhang
  • Patent number: 11799558
    Abstract: An optical network component, system, and method are herein described. The system and method include introducing an amplitude modulated (AM) tone and data to an optical modulator generating a modulated optical signal, measuring an amplitude response of the AM tone within the modulated optical signal, calculating a frequency response based on the amplitude response, and calibrating the optical modulator with the frequency response.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: October 24, 2023
    Assignee: Infinera Corporation
    Inventors: Amir Rashidinejad, Wenbo Gao
  • Patent number: 11791924
    Abstract: Systems and methods are disclosed, including a method comprising receiving power loss measurement parameters for components of an optical transmission system comprising a first node having a preamplifier, the first node configured to transmit and receive optical signals on a number of optical channels to and from one or more first transceivers; a second node configured to transmit and receive optical signals on the number of optical channels to and from one or more second transceivers; and one or more bidirectional optical fiber between the first node and the second node; determining and setting, using one or more of the power loss measurement parameters and using a number of optical channels in the optical transmission system, a power gain for the preamplifier in the first node, in order to obtain a target client power of the optical signals transmitted to the one or more first transceivers.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: October 17, 2023
    Assignee: Infinera Corporation
    Inventor: Bengt Johansson
  • Patent number: 11791893
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: October 17, 2023
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Patent number: 11770186
    Abstract: An optical network having a first terminal node, a second terminal node, and a network service system is described. The first terminal node has a plurality of ports and a signal restoration component to create a restored path. The second terminal node has a plurality of ports and a failure monitor to issue a path failure notice. A working path, a protection path, and the restored path are each fiber optic lines optically coupling the first terminal node to the second terminal node to enable a service, each path requiring a quantity of exclusive licenses. The network service system receives a path failure notice indicating a working path failure, calculates the quantity of licenses required by the restored path, releases the quantity of licenses required by the working path and applies at least a portion of the quantity of licenses to the quantity of licenses required by the restored path.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: September 26, 2023
    Assignee: Infinera Corporation
    Inventors: Rajan Rao, Wayne Wauford, Vinesh Raghavan, Prasanjeet Khuntia
  • Patent number: 11770137
    Abstract: Systems and methods for improving the error floor performance in decoding generalized product codes (GPC) are described. The systems and methods can implement a two stage process to decode a GPC block code and break a stall error pattern for the decoding the block code. In the first stage, erroneuous bits in a codeword can be flagged. In the second stage, some of these bits and related bits in a codeword can be toggled to generate one or more test patterns. The test patterns can be decoded and one of them can be selected using a particular selection criteria to ultimately break the stall error pattern and improve the error floor performance.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: September 26, 2023
    Assignee: Infinera Corporation
    Inventors: Mehdi Torbatian, Han Henry Sun
  • Publication number: 20230291410
    Abstract: Consistent with the present disclosure, low pass filters are provided in the electrical paths connecting digital to analog converter (DAC) circuitry to an optical block package (also referred to as a “gold box”). The low pass filter blocks or substantially attenuates high frequency noise components present in an analog signal output from the DAC, thereby reducing errors that might otherwise be present in the transmitted data.
    Type: Application
    Filed: March 9, 2023
    Publication date: September 14, 2023
    Applicant: Infinera Corporation
    Inventor: Jiaming Zhang
  • Patent number: 11757535
    Abstract: Optical transmitters and receivers for improving synchronization of data transmitted over an optical network are described. The receiver can perform non-linear filtering as part of framer index estimation operations to improve the synchronization. The receiver can determine estimated positions of framer indices in data frames received from the transmitter. Next, using a non-linear filter, the receiver can remove estimated positions that are likely erroneous or are greater than a threshold away from the median or mode estimated framer index position. By removing the likely erroneous estimated positions, the receiver can then determine the estimated position of a framer index position for multiple frames with greater confidence.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: September 12, 2023
    Assignee: Infinera Corporation
    Inventors: Mehdi Torbatian, Yuliang Gao, Ahmed Morra, Han Henry Sun, Yeongho Park
  • Patent number: 11743621
    Abstract: Optical subcarriers may be employed to transmit data in a point-to-multi-point network whereby a hub node including a network switch receives such data from a client and transmits information indicative of such data to multiple leaf or network nodes, where data intended for such leaf node is output. Often the rate at which data is supplied to the hub node is different than the rate at which information indicative of the data is transmitted. Moreover, the client data may have a format that is different than that associated with the transmitted information indicative of the client data. Consistent with the present disclosure, client data is inverse multiplexed to lower data rate streams and then multiplexed to a plurality of inputs, each of which corresponding to a respective optical subcarrier. Information indicative of the data may be allocated to multiple subcarriers, if the a single carrier lacks sufficient capacity or bandwidth to meet the bandwidth requirements of the leaf node.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: August 29, 2023
    Assignee: Infinera Corporation
    Inventors: Tulasi Veguru, David F. Welch, Mats Plantare, Prasad Paranjape, Ting-Kuang Chiang, Gus Elmer
  • Patent number: 11742938
    Abstract: Methods and apparatuses for restoring lost signal in a network transmission line are disclosed. A first optical signal transmitted from a first optical module is received at an optical switch, the first optical signal having a first optical spectrum with data encoded into the first optical signal. A second optical signal having a second optical spectrum corresponding to the first optical spectrum without data encoded into the second optical signal, is received at the optical switch, the second optical signal the second optical signal transmitted from an amplified spontaneous emission source. Detecting, at a first photo detector, a loss of optical spectrum in the first optical signal, and, in response to detecting the loss of optical spectrum in the first optical signal, switching the optical switch from passing the first optical signal to passing the second optical signal thereby supplying at least one idler carrier without data imposed.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: August 29, 2023
    Assignee: Infinera Corporation
    Inventors: Ramakrishna Pratapa, Emilio Bravi
  • Patent number: 11736204
    Abstract: Consistent with an aspect of the present disclosure, electrical signals or digital subcarriers are generated in a DSP based on independent input data streams. Drive signals are generated based on the digital subcarriers, and such drive signals are applied to an optical modulator, including, for example, a Mach-Zehnder modulator. The optical modulator modulates light output from a laser based on the drive signals to supply optical subcarriers corresponding to the digital subcarriers. These optical subcarriers may be received by optical receivers provided at different locations in an optical communications network, where the optical subcarrier may be processed, and the input data stream associated with such optical subcarrier is output. Accordingly, instead of providing multiple lasers and modulators, for example, data is carried by individual subcarriers output from an optical source including one laser and modulator. Thus, a cost associated with the network may be reduced.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: August 22, 2023
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, Matthew L. Mitchell
  • Patent number: 11728899
    Abstract: Consistent with an aspect of the present disclosure, electrical signals or digital subcarriers are generated in a DSP based on independent input data streams. Drive signals are generated based on the digital subcarriers, and such drive signals are applied to an optical modulator, including, for example, a Mach-Zehnder modulator. The optical modulator modulates light output from a laser based on the drive signals to supply optical subcarriers corresponding to the digital subcarriers. These optical subcarriers may be received by optical receivers provided at different locations in an optical communications network, where the optical subcarrier may be processed, and the input data stream associated with such optical subcarrier is output. Accordingly, instead of providing multiple lasers and modulators, for example, data is carried by individual subcarriers output from an optical source including one laser and modulator. Thus, a cost associated with the network may be reduced.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, Matthew L. Mitchell
  • Patent number: 11711148
    Abstract: Probabilistic constellation shaping (PCS) is applied to a desired probability distribution over the 2-D constellation points. Constellation points are partitioned into multiple disjoint sets in which all the constellation points within a subset have the same energy level (i.e., amplitude) or distance from the origin on the complex plane. Each of the sets may be further subdivided into smaller disjoint sets of constellation points to facilitate labeling of the constellation points. The sets may be indexed from 0 to the total number of disjoint sets to form an index set. The desired distribution may then be applied over the index set either using a distribution matcher (DM) or using a lookup table. The desired distribution may be generated before forward error correction (FEC) encoding that preserves the generated amplitude distribution through FEC encoding of data bits.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: July 25, 2023
    Assignee: Infinera Corporation
    Inventors: Mehdi Torbatian, Han Henry Sun, Kuang-Tsan Wu
  • Patent number: 11705966
    Abstract: A method and system is described. A signal indicative of a failure of a first channel within a plurality of channels of a transmission signal traversing a signal working path in a network is received. The signal working path has a headend node, a tail-end node and an intermediate node. The first channel has a frequency band and a power level prior to failing. The signal working path is associated with a protection path. The protection path includes the intermediate node, optical cross-connects, and a transmitter supplying (ASE) light. The transmitter is activated to supply the ASE light within a frequency band and having a power level corresponding to the frequency band and power level associated with the first channel. The ASE light is supplied to a cross-connect, such that the cross-connect provides a transmission signal including the ASE light.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: July 18, 2023
    Assignee: Infinera Corporation
    Inventors: Sharfuddin Syed, Ashwini K. Bhat, Vasudha Bhaskara
  • Patent number: 11689282
    Abstract: An example system includes a transceiver and a microcontroller. The microcontroller is configured to receive, from first and second network interfaces of the transceiver, a plurality of messages from a hub node and the leaf nodes. Each of the messages corresponds to a respective one of the ingress or egress data flows. The microcontroller is also configured generate a resource assignment map based on the messages. The resource assignment map includes pairings between a respective one of the ingress data flows and a respective one of the egress data flows, and, for each of the pairings, an indication of a respective network resource assigned to exchange the egress data flow of that pairing with a respective one of the leaf nodes. The microcontroller is also configured to generate a command to cause the transceiver to transmit the egress data flows in accordance with the resource assignment map.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: June 27, 2023
    Assignee: Infinera Corporation
    Inventors: Rajan Rao, Steven J. Hand, Vasudha Bhaskara
  • Publication number: 20230198622
    Abstract: A method includes receiving client data; extracting overhead data from the client data; mapping the client data into one or more frames, where each of the one or more frames has a frame payload section and a frame overhead section, where the client data is mapped into the one or more frames; inserting the overhead data into the frame overhead section of the one or more frames; transporting the one or more frames across a network by generating a plurality of optical subcarriers carrying the one or more frames; extracting the overhead data from the frame overhead section of the one or more frames; recovering the client data from the one or more frames; inserting the extracted overhead data into the recovered client data to create modified client data; and outputting the modified client data.
    Type: Application
    Filed: March 25, 2022
    Publication date: June 22, 2023
    Applicant: Infinera Corporation
    Inventors: Radhakrishna Valiveti, Rajan Rao, Vinod Narippatta, Sharfuddin Syed, Parthiban Kandappan
  • Publication number: 20230198626
    Abstract: Optical network systems are disclosed, including systems having transmitters with a digital signal processor comprising forward error correction circuitry that provides encoded first electrical signals based on input data; and power adjusting circuitry that receives second electrical signals indicative of the first electrical signals, the power adjusting circuitry supplying third electrical signals, wherein each of the third electrical signals is indicative of an optical power level of a corresponding to one of a plurality of optical subcarriers output from an optical transmitter.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Applicant: Infinera Corporation
    Inventors: Steven Joseph Hand, Ahmed Awadala, Luis A. Perez, Vincent G. Dominic, Kuang-Tsan Wu
  • Patent number: 11683227
    Abstract: A network element is herein disclosed. The network element comprises an embedded device having one or more property affecting a function of the embedded device and one or more status; a first computing system having a first processor and a first memory, the first memory being a first non-transitory computer-readable medium storing a device microservice and a hardware entity microservice, the hardware entity microservice in communication with the embedded device; a second computing system having a second processor and a second memory, the second memory being a second non-transitory computer-readable medium storing a core framework microservice; and a communication device in communication with the first computing system and the second computing system.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: June 20, 2023
    Assignee: Infinera Corporation
    Inventors: Dharmendra Naik, Yatindra Chugh, Gilbert Levesque, Bryce Edwards, Prashaanth Ragupathy
  • Patent number: 11671195
    Abstract: A system comprising a hub transceiver coupled to a first network node; and a plurality of edge transceivers, each configured to be communicatively coupled to a respective second network node, and to the hub transceiver, wherein the hub transceiver is operable to transmit a first message to each of the edge transceivers, the first message comprising an indication of available optical subcarriers and availability to use multiple non-contiguous optical subcarriers; receive, a service request identifying a selected subset of the available optical subcarriers including a non-contiguous first optical subcarrier and second optical subcarrier, transmit a second message to indicate either a success or a failure, and receive, via the selected subset, data from the second network node, and wherein at least one of the edge transceivers is operable to, transmit, using the selected subset of available optical subcarriers, data from the second network node to the first network node.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: June 6, 2023
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Steven J. Hand, Paul N. Freeman
  • Publication number: 20230141436
    Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.
    Type: Application
    Filed: December 31, 2022
    Publication date: May 11, 2023
    Applicant: Infinera Corporation
    Inventors: Mingzhi Lu, Peter W. Evans