Patents Assigned to Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
  • Patent number: 10925981
    Abstract: The present invention provides a hexa-lactoside-triazanonane triacetic acid (NOTA) derivative, a method for radiolabeling a hexa-lactoside positron emission tomography (PET) imaging agent for a liver receptor with Ga-68, and a hexa-lactoside PET imaging agent for a liver receptor. The hexa-lactoside-NOTA derivative is a conjugate of six chains of lactose with NOTA obtained by conjugating hexa-lactoside to a chelating agent p-thiocyanate-benzyl-triazanonane diacetic acid-glutamic acid in the presence of triethyl amine/dimethyl formamide as a solvent. The radiolabeling method comprises labeling with Ga-68 at room temperature. According to the present invention, the labeling effect is stable, the labeling efficiency of the labeled product is greater than 95%, the labeled product is highly stable and the radiochemical purity is still greater than 90% after 4 hours.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: February 23, 2021
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Wuu-Jyh Lin, Mei-Hui Wang, Hung-Man Yu, Kun-Liang Lin, Yan-Feng Jiang, Rui-Yu Chen
  • Patent number: 10925572
    Abstract: A geometric calibration method for dual-axis digital tomosynthesis includes the steps of: providing a calibration phantom having a first plate, a second plate parallel to the first plate, and mark points distributed to the first and second plates; arranging any mark point at the first plate not to be vertically collinear with a mark point at the second plate; projecting the calibration phantom onto a planar detector to obtain a projected calibration-phantom image; deriving a conversion relationship between the mark point and the corresponding projected position at the planar detector to further establish a projection matrix related to an imaging system; and, applying the projection matrix to calculate a plurality of geometric parameters. In addition, a geometric calibration system for dual-axis digital tomosynthesis is also provided.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: February 23, 2021
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Chia-Hao Chang, Sheng-Pin Tseng, Yu-Ching Ni, Fan-Pin Tseng
  • Patent number: 10920742
    Abstract: A noise-reduction device for a wind turbine and the wind turbine applied thereof are introduced. The noise-reduction device has a body. The body has a connection portion and a spoiler. The connection portion is concavely disposed on one side of the body and corresponds in shape to the wind turbine's blade so as to be fixed to a confronting edge of the wind turbine blade. The spoiler is disposed on the opposing side of the body. As soon as the wind turbine blade is driven by wind, the spoiler stirs air and guides the air across two sides thereof. When guided by the spoiler, airflows turn into vortexes on the wind turbine blade; hence, the chance that the wind turbine will stall and generate noise is greatly reduced.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: February 16, 2021
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Yan-Ting Lin, Guan-Ting Lin, En-Kai Cheng, Chin-Cheng Huang
  • Patent number: 10923690
    Abstract: A refined microcrystalline electrode manufacturing method is provided. The refined microcrystalline electrode manufacturing method includes the following step. First, an active material electrode layer is subjected to a conventional thermal annealing (CTA) process in an oxygen-containing environment at a first temperature interval to form an active material crystallization precursor; the active material crystallization precursor is subjected to a rapid thermal annealing (RTA) process in the oxygen-containing environment at a second temperature interval to form an active material coating layer with uniformly distributed fine microcrystal grains, wherein the temperature range of the second temperature interval is greater than the temperature range of the first temperature interval. In addition, a thin film battery and a thin film battery manufacturing method are also provided.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 16, 2021
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Tien-Hsiang Hsueh, Yuh-Jenq Yu, Chi-Hung Su, Der-Jun Jan
  • Patent number: 10916800
    Abstract: An apparatus is provided for plating a lithium (Li)-compound thin film. In the thin film, Li is obtained through thermal evaporation, and titanium (Ti) or other metal by using arc plasma. The elements converted into gas phase are co-deposited in a plasma environment with a reaction gas (oxygen) to be activated as excited atoms or molecules for reaction. In the end, all of the constituent elements are deposited on a substrate to form the Li-compound thin film. Thus, reaction efficiency is high with a fast deposition rate. The composition ratio of each element is independently determined to control its yield according to the requirement. Hence, the present invention greatly enhances the fabrication rate with lowered production cost for applications in the thin-film battery industries.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: February 9, 2021
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Der-Jun Jan, Yuh-Jenq Yu, Tien-Hsiang Hsueh, Tien-F Ko
  • Patent number: 10826101
    Abstract: A flow battery apparatus is provided with shunted currents repressed. The apparatus has a positive electrode device, a negative electrode device and a plurality of gas-gap devices. Gas-gap devices are separately set between branching channels and inlet and outlet manifolds of positive and negative electrodes. Each of the branching channels separately has an inserting tube to be inserted into one of the gas-gap devices. The diameter of the inserted vessel of gas-gap devices is bigger than the diameter of the inserting tube connected to a corresponding one of the branching channels. Thus, working liquids transferred to the positive and negative electrodes are segregated with coordination of the gas-gap devices. Only air spaces and discrete liquid drops are left between separated parts of the working liquids. Thus, shunted currents are repressed by preventing conductive paths from being formed between the positive and negative electrodes.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: November 3, 2020
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Hwei-Liang Chang, Ning-Yih Hsu, Yao-Sheng Hsu, Zone-Sure Chang
  • Patent number: 10784533
    Abstract: A Li—Sn—O—S compound, a manufacturing method therefor and use thereof as an electrolyte material of Li-ion batteries, and a Li—Sn—O—S hybrid electrolyte are provided. The Li—Sn—O—S compound of the present invention is laminated Sn—O—S embedded with lithium ions. The Li—Sn—O—S compound is represented by the formula Li3x[LixSn1?x(O,S)2], where x>0. The manufacturing method for a Li—Sn—O—S compound includes the following steps of: (S1000) providing a Sn—O—S compound; (S2000) adding a lithium source into the Sn—O—S compound to form a Li—Sn—O—S precursor; and (S3000) performing calcination on the Li—Sn—O—S precursor in a vulcanization condition.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: September 22, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH , ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Der-Jun Jan, Dong-Hau Kuo, Roger Lo
  • Patent number: 10707076
    Abstract: A method for manufacturing a nanostructure composite material includes a step of preparing an inorganic material nanostructure, and a step of embedding an organic material to the inorganic material nanostructure so as to form the nanostructure composite material. In addition, a nanostructure composite material is also provided.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: July 7, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Der-Jun Jan, Shih-Shou Lo, Cheng-How Wang
  • Patent number: 10709005
    Abstract: Plasma torch with an integrated electrode incorporating many heat pipes each heat pipe comprises an evaporating section and a condensing section set at a front end and a rear end of the electrode, respectively. The heat pipes with extremely high thermal conductivity can be used to replace the traditional water-cooled torch's electrode. The effect of reducing the elevated temperature at the torch's arc root zone through cooling by heat pipes is beneficial for prolonging the lifetime of plasma torch. Each heat pipe is filled with a small amount of working fluid. Even if one heat pipe is etched out, the cooling liquid thus ejected is limited without causing gas explosion and rock curing; the rest of heat pipes are not damage and can still function; although the heat dissipation efficiency might be reduced a little, the plasma torch still works. Thus, flexibility of the whole heat dissipation is enhanced.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 7, 2020
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Shiaw-Huei Chen, How-Ming Lee
  • Patent number: 10662073
    Abstract: A method for manufacturing a Zinc oxide nanocapsule includes: a step of preparing a Zinc oxide narorod; a step of etching the Zinc oxide narorod to form a Zinc oxide nanotube, wherein the Zinc oxide nanotube is a hollow tubular structure; a step of filling a material into the Zinc oxide nanotube; and, a step of regrowing the Zinc oxide nanotube to encapsulate the hollow tubular structure so as to form a Zinc oxide nanocapsule. In addition, a zinc oxide nanocapsule is also provided.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: May 26, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Der-Jun Jan, Shih-Shou Lo, Wan-Hsuan Tsai
  • Patent number: 10582898
    Abstract: A tomography method includes: a step of having a photon counting detector to undergo a relative motion with respect to an X-Ray source, and capturing 2×N projected energy spectral data at 2×N individual discrete projection angles that divide the relative motion, the N being a positive integer; a step of reforming the 2×N projected energy spectral data at the 2×N individual discrete projection angles and establishing corresponding projection intensity data; and, a step of basing on the projection intensity data and the 2×N projected energy spectral data at the 2×N individual discrete projection angles to calculate the material decomposition images. In addition, a tomography system is also provided.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 10, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Chia-Hao Chang, Shu-Chun Chang, Fan-Pin Tseng, Yu-Ching Ni
  • Patent number: 10570065
    Abstract: A method is provided to fabricate a green desiccant wheel. A green recycled adsorbent material of aluminum hydroxide and alumina is extracted and used as a base material to be added to a 3-dimensional (3D) network skeleton of a foam support. Through sintering, surface is hardened with the material adsorbed to megapores uniformly distributed. Thus, an adsorbent material of porous ceramic having pores on surface is made. The area contacting with moist air is increased. The moisture-adsorbing capacity is improved. At last, the whole procedure is integrated to develop a high-efficiency green desiccant wheel. Thus, the reusable materials are kept at innate grade or upgraded for recycling and regenerating. New materials and products can be further fabricated. The present invention helps solving environmental problem of wastes. Life cycle of resource is lengthened. A sample of recycling economy is innovated. Industrial efficiency is effectively enhanced.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: February 25, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Sheng-Fu Yang, To-Mei Wang, Chi-Tzeng Hsu, Heng-Yi Li
  • Patent number: 10547079
    Abstract: A portable flame electric generation device having metal-supported solid oxide fuel cells includes a furnace, a heat shield structure, a plurality of metal-supported solid oxide fuel cells and a housing structure. Each of the metal-supported solid oxide fuel cells includes a porous metal substrate, a first anode layer, a second anode layer, an anode isolation layer, an electrolyte layer, a cathode isolation layer, a cathode interface layer and a cathode current-collecting layer. The metal-supported solid oxide fuel cell is capable of quickly starting up and withstanding thermal shocks, and also liquefied fuel cartridges are applied as heating and fuel sources for transforming the CO and H2 fuels into electricity via electrochemical reactions.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: January 28, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Chang-Sing Hwang, Chun-Huang Tsai, Chun-Liang Chang, Ming-Hsiu Wu, Te-Jung Huang, Sheng-Fu Yang, Cheng-Yun Fu
  • Patent number: 10538486
    Abstract: The present invention relates to a hydroxamic acid-based contrast agent containing an isotope of fluorine, which comprises a compound having a structure of Formula (III): wherein R1 represents radioactive fluorine-18 (18F) or isotope fluorine-19 (19F), and R2 represents hydroxyamine —(NH)OH. The hydroxamic acid-based contrast agent containing an isotope of fluorine provided in the present invention has the capability of selectively inhibiting histone deacetylase (HDAC) subtypes 8/6/3, and specifically targets to the focus of spinocerebellar ataxia with over-activation of HDAC. By labeling with the radioisotope fluorine-18, a positron emission tomography (PET) image is obtained with the hydroxamic acid-based contrast agent containing radioisotope fluorine-18, whereby spinocerebellar ataxia is effectively detected.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: January 21, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN. R.O.C
    Inventors: Mei-Hui Wang, Chia-Yu Hu, Mao-Chi Weng, Jyun-Hong Chen, Chun-Hung Yang, Hung-Man Yu
  • Patent number: 10524750
    Abstract: A scanning system includes a first base, a bed panel, a bed board, a second base and an X-ray mechanism. The bed panel, movably located on the first base, includes a first image-receiving module. The bed board is movably located on the bed panel. The second base, located aside to the first base, includes a second image-receiving module. The X-ray mechanism, connected with the first base, includes an X-ray tube. While the bed panel and the bed board are moved away from the second base, and the X-ray mechanism is moved toward the second base; then, the X-ray tube would undergo a vertical movement to a position aside to a lateral side of the first base by facing the second base.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: January 7, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Ho-Hui Hsieh, Sheng-Pin Tseng, Syuan-Ya Huang
  • Patent number: 10524758
    Abstract: The invention provides an automatic exposure control method for a digital X-ray imaging device. The automatic exposure control method for a digital X-ray imaging device includes the following the steps. First, a parameter database is provided before imaging scan. A depth information is generated, wherein the depth information by a depth sensor detect the thickness of a region of interest of an object. Imaging exposure parameters, mAs and kV, are estimated according to the depth information and the parameter database. Then, X-ray imaging is performed according to the imaging exposure parameters estimated by the method described in this application. In addition, an automatic exposure control system for a digital X-ray imaging device is also provided.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: January 7, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Meei-Ling Jan, Sheng-Pin Tseng, Chia-Hao Chang
  • Patent number: 10475544
    Abstract: A method of oxidative degradation is provided for waste of ion exchange resin. Therein, oxidative deactivation is processed through a fluidized bed. A column-type reactor is used to fluidize solid of the ion exchange resin. The reactor schematizes the input and output of an ion exchange resin, an oxidant, a catalyst and a fluid. The reactor controls the reaction temperature. The reactor separates solid and liquid, and uniformly distributes fluid. The present invention fluidizes the ion exchange resin in the reactor. The present invention processes oxidation within a controlled temperature range with the oxidant and catalyst added. The oxidation is maintained at high efficiency with easy control. The original structure and the characteristic of ion exchange of the ion exchange resin are destroyed.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: November 12, 2019
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C.
    Inventors: Chun-Ping Huang, Ying-Jing Li, Tung-Yi Chung
  • Patent number: 10466369
    Abstract: An energy-resolved X-ray image detector includes a scintillation crystal layer, a photon detector layer and an optical layer. The scintillation crystal layer includes a plurality of scintillation crystals. The photon detector layer includes a plurality of photon detector elements. The optical layer is disposed between the scintillation crystal layer and the photon detector layer. The optical layer includes a plurality of optical elements having different light transmittances. The scintillation crystal is used for converting the X-ray beams into scintillation lights, and, when each scintillation light injects the corresponding optical elements, the light transmittances of the optical elements determine whether the scintillation lights can pass through the respective optical elements. The photon detection element then detects the scintillation lights passing through the corresponding optical elements to discriminate the energy of the X-ray beams.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: November 5, 2019
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Hsiang-Ning Wu, Hsin-Chin Liang
  • Patent number: 10460846
    Abstract: An examination and test system for nuclear-grade control valve is provided and includes a hermetic first chamber, a base, a guide unit, a winder, a steel cable, and a length measurement device. The hermetic first chamber includes a second chamber for accommodating a control valve. The base is disposed outside the hermetic first chamber. The guide unit is disposed on at least one of the control valve and the base. The winder and the length measurement device are disposed on the base. The steel cable connects with a valve rod of the control valve and extends out of the hermetic first chamber to connect with the winder. The steel cable is wound on the guide unit, wound up by the winder, and thus rendered taut at any time. The length measurement device has a measurement element coupled to the steel cable and displays the displacement of the measurement element.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: October 29, 2019
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Hsueh-Chao Ko, Chii-Neng Ou Yang, Yao-Min Lee, Cheng-Jung Yu
  • Patent number: D903075
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 24, 2020
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Yi-Ya Huang, Chun-Yi Chen, Hwen-Fen Hong