Patents Assigned to Institute of Technology
  • Publication number: 20160312039
    Abstract: A process for the preparation of an antimicrobial coating solution is described. The process comprises the steps of: (i) mixing a chelating agent with titanium alkoxide and fluoroacetic acid; and (ii) adding an aqueous solution to the mixture from step (i). The antimicrobial coating described is visible light activated. The coating is applied to surfaces and then heat treated to form a transparent layer on the surface. This is particularly advantageous where the surface is glass.
    Type: Application
    Filed: December 12, 2014
    Publication date: October 27, 2016
    Applicant: Dublin Institute of Technology
    Inventors: Darragh Ryan, Suresh Pillai, Joanna Carroll
  • Publication number: 20160315807
    Abstract: Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control on an unbalanced network. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node in an unbalanced network; wherein the processor is configured by the distributed power control application to: send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine updated node operating parameters using the node operating parameters that describe the operating parameters of the node, and the operating parameters of the set of at least one node, where each iteration in the iterative process involves evaluation of a subproblem; and adjust node operating parameters.
    Type: Application
    Filed: April 21, 2016
    Publication date: October 27, 2016
    Applicant: California Institute of Technology
    Inventors: Qiuyu Peng, Steven H. Low
  • Publication number: 20160313425
    Abstract: A low-cost and bench-top magnetic resonance relaxometer can be used for ex-vivo biochemical stress tests on plasma/erythrocytes, enabling deep-phenotyping of an individual's oxidative status, susceptibility and capacity.
    Type: Application
    Filed: April 23, 2016
    Publication date: October 27, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Weng Kung PENG, Jongyoon HAN, Tze Ping LOH
  • Patent number: 9476830
    Abstract: Second harmonic nanoprobes for imaging biological samples and a method of using such probes to monitor the dynamics of biological process using a field resonance enhanced second harmonic (FRESH) technique are provided. The second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystals that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy for in vivo imaging of biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: October 25, 2016
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Ye Pu, Demetri Psaltis, John H. Hong, Scott E. Fraser
  • Patent number: 9476768
    Abstract: The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Lauren DeFlores, Andrei Tokmakoff
  • Patent number: 9478229
    Abstract: Loud sounds with fast rise times, like gunfire and explosions, can cause noise-induced hearing loss (NIHL). Unfortunately, current models do not adequately explain how impulsive sounds cause NIHL, which makes it difficult to predict and prevent NIHL on battlefields and other hostile or rugged environments. Fortunately, the impulsive sounds experienced by soldiers and others working in rugged environments can be recorded using a compact, portable system that acquires, digitizes, and stores high-bandwidth audio data. An example of this system can be mounted on a helmet or other article and used to record hours of audio data at a bandwidth of 20 kHz or higher, which is broad enough to capture sounds with rise times less than 50 ms. An analog-to-digital converter (ADC) digitizes these broadband audio signals at rate of 40 kHz or higher to preserve the impulse information. A processor transfers the digitized samples from a buffer to a memory card for later retrieval using an interrupt-driven processing technique.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph J. Lacirignola, Trina Rae Vian, David F. Aubin, Jr., Thomas F. Quatieri, Kate D. Fischl, Paula P. Collins, Christopher J. Smalt, Paul D. Gatewood, Nicolas Malyska, David C. Maurer
  • Patent number: 9474717
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides vaccine nanocarriers capable of stimulating an immune response in T cells and/or B cells, in some embodiments, comprising at least one immunomodulatory agent, and optionally comprising at last one targeting moiety and optionally at least one immunostimulatory agent. The invention provides pharmaceutical compositions comprising inventive vaccine nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive vaccine nanocarriers and pharmaceutical compositions thereof. The invention provides methods of prophylaxis and/or treatment of diseases, disorders, and conditions comprising administering at least one inventive vaccine nanocarrier to a subject in need thereof.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 25, 2016
    Assignees: Massachusetts Institute of Technology, The Children's Medical Center Corporation, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Ulrich H. von Andrian, Omid C. Farokhzad, Robert S. Langer, Tobias Junt, Elliott Ashley Moseman, Liangfang Zhang, Pamela Basto, Matteo Iannacone, Frank Alexis
  • Patent number: 9478403
    Abstract: An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Paulo C. Lozano, Steven Mark Arestie
  • Patent number: 9476129
    Abstract: The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: October 25, 2016
    Assignee: California Institute of Technology
    Inventors: Nathan S. Lewis, Joshua M. Spurgeon
  • Patent number: 9474634
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, Jr., Matthew J. Carty
  • Patent number: 9476981
    Abstract: An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Ami Yaacobi, Michael R. Watts
  • Patent number: 9478843
    Abstract: A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90°). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 25, 2016
    Assignee: California Institute of Technology
    Inventors: Adrian Joseph Tang, Goutam Chattopadhyay, Nacer E. Chahat, Emmanuel Decrossas
  • Patent number: 9476026
    Abstract: Provided is an electroactive structure and method for growing isolated differentiable cells comprising a three dimensional matrix of fibers formed of a biocompatible synthetic piezoelectric polymeric material, wherein the matrix of fibers is seeded with the isolated differentiable cells and forms a supporting scaffold for growing the isolated differentiable cells, and wherein the matrix of fibers stimulates differentiation of the isolated differentiable cells into a mature cell phenotype on the structure.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 25, 2016
    Assignee: New Jersey Institute of Technology
    Inventors: Treena Arinzeh, George Collins, Yee-Shuan Lee
  • Publication number: 20160303384
    Abstract: The present disclosure provides advantageous optical conduit assemblies (e.g., biocompatible and implantable optical conduit assemblies), and related methods of use. More particularly, the present disclosure provides advantageous optical conduit assemblies (e.g., polydimethylsiloxane (“PDMS”)-based optical conduit assemblies) configured to power implantable devices (e.g., neural micro-stimulators or deep brain stimulators or the like) or to be used in optogenetic stimulation. In general, the exemplary optical conduit assemblies can be used for applications where energy needs to be transmitted to deep locations inside the body or brain without using electrical wires. Therefore, implantable devices that need to be powered (e.g., neural prosthetics) can be powered from an external light source using an optical conduit and an optical-to-electrical converter (e.g., a photodiode) attached to the end of the optical conduit on the inside.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Applicant: New Jersey Institute of Technology
    Inventors: Mesut Sahin, Ali Ersen
  • Publication number: 20160307359
    Abstract: The use of power diagrams in accordance with embodiments of the invention enable particle based fluid simulation. One embodiment includes a processor, a memory containing a model of a fluid, where the fluid is broken into a set of cells each defining a volume with boundaries that are relative to a distance of a set of points, where the process is configured by the power particle application to: calculate a plurality of forces acting on the set of cells, move the set of cells within the model of the fluid based upon the plurality of forces, and update the model of the fluid with a new set of cells.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Applicant: California Institute of Technology
    Inventors: Mathieu Desbrun, Fernando De Goes
  • Publication number: 20160305939
    Abstract: The invention, in some aspects relates to compositions and methods for imaging biological systems and physiological activity and conditions in cells.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Or Shemesh, Asmamaw Wassie, Chih-Chieh Yu, Edward Boyden
  • Publication number: 20160304861
    Abstract: The invention, in some aspects, relates to methods, systems, and components of a high-content, single-cell resolution, spatial multiplex cell imaging system.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Guangyu Xu, Edward Boyden, Kiryl D. Piatkevich, Katarzyna Adamala
  • Publication number: 20160303046
    Abstract: The invention provides delivery systems comprised of stabilized multilamellar vesicles, as well as compositions, methods of synthesis, and methods of use thereof. The stabilized multilamellar vesicles may comprise prophylactic, therapeutic and/or diagnostic agents.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 20, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Darrell J. Irvine, Jaehyun Moon
  • Patent number: 9469866
    Abstract: A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: October 18, 2016
    Assignee: California Institute of Technology
    Inventor: Adrian Ponce
  • Patent number: 9469083
    Abstract: Inverted Nanocone Structures and Its Fabrication Process. The method of fabricating nanotextured structures includes making a master mold having an array of tapered structures to be replicated. The master mold is pressed into a curable polymer supported on a substrate and the polymer is cured. Thereafter, the mold is detached from the cured polymer to form the nanotextured structure.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: October 18, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Hyungryul Choi, Jeong-gil Kim, Kyoo Chul Park, Robert E. Cohen, Gareth H. McKinley, George Barbastathis