Abstract: A system and method for modeling supervisory control of heterogeneous unmanned vehicles through discrete event simulation is provided. Generally, the system contains a memory and a processor configured by the memory to perform the steps of: simulating events in the system; simulating arrival processes for the events in the system; simulating how long a human operator takes to respond to the simulated events in the system, where the time that the human operator takes to respond to a simulated event is referred to as a service time; and prioritizing the events to be handled by the human operator, wherein the system models human operator involvement in the unmanned vehicle system.
Abstract: An active imaging system, which includes a light source and light sensor, generates structured illumination. The light sensor captures transient light response data regarding reflections of light emitted by the light source. The transient light response data is wavelength-resolved. One or more processors process the transient light response data and data regarding the structured illumination to calculate a reflectance spectra map of an occluded surface. The processors also compute a 3D geometry of the occluded surface.
Abstract: The present invention relates to compounds of formula (I): or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein U, J, V, X, R2a, R2b, R2c, R5 and t are as described herein. The present invention relates generally to inhibitors of histone deacetylase and to methods of making and using them. These compounds are useful for promoting cognitive function and enhancing learning and memory formation. In addition, these compounds are useful for treating, alleviating, and/or preventing various conditions, including for example, neurological disorders, memory and cognitive function disorders/impairments, extinction learning disorders, fungal diseases and infections, inflammatory diseases, hematological diseases, and neoplastic diseases in humans and animals.
Type:
Grant
Filed:
October 28, 2013
Date of Patent:
September 20, 2016
Assignees:
Massachusetts Institute of Technology, The General Hospital Corporation, The Broad Institute, Inc.
Inventors:
Edward Holson, Florence Fevrier Wagner, Michel Weiwer, Li-Huei Tsai, Stephen Haggarty, Yan-Ling Zhang
Abstract: A handheld inkjet printer includes an inkjet print head and a tip. One or more sensors measure the position of points on a curved surface that are physically touched by the tip while the tip is moved relative to the surface. Based on these measurements, a computer generates or modifies a computer model that specifies at least (i) position of the curved surface, and (ii) a target region of the curved surface on which a pattern is to be printed. In addition, the one or more sensors measure position and orientation of nozzles in the print head, while the handset is moved relative to the surface. The computers also calculate, based on the computer model and these additional measurements, which of the nozzles to fire at a different times, such that the pattern is printed on the target region as the handset is moved relative to the surface.
Type:
Grant
Filed:
August 23, 2015
Date of Patent:
September 20, 2016
Assignee:
Massachusetts Institute of Technology
Inventors:
Pragun Goyal, Amit Zoran, Joseph Paradiso
Abstract: The disclosure provides nanostructures (e.g., nanospheres and nano-paddlewheels) formed through transition metal-ligand (e.g., Pd(II)-, Ni(II)-, or Fe(II)-ligand of Formula (A)) coordination and junction self-assembly. The disclosure also provides supramolecular complexes that include the nanostructures connected by divalent linkers Y. The provided supramolecular complexes are able to form gels (e.g., hydrogels). The gels are suprametallogels and exhibited excellent mechanical properties without sacrificing self-healing and showed high robustness and storage modulus. The present disclosure further provides compositions (e.g., gels) that include the nanostructures or supramolecular complexes and optionally an agent (e.g., small molecule), where the nanostructures and the nanostructure moieties of the supramolecular complexes may encapsulate and slowly release the agent.
Type:
Grant
Filed:
February 9, 2015
Date of Patent:
September 20, 2016
Assignee:
Massachusetts Institute of Technology
Inventors:
Jeremiah A. Johnson, Niels Holten-Andersen, Scott Charles Grindy, Ken Kawamoto, Aleksandr V. Zhukhovitskiy
Abstract: A voltage-step down rectifier topology suitable for integration on a die of an integrated circuit is described. In one embodiment, a switched capacitor rectifier is provided having an architecture such that an input voltage swing of the switched-capacitor rectifier is a factor N times an output voltage where N depends upon the number of stages such that the switched-capacitor rectifier can provide a ?/(2N) step-down voltage conversion ratio between an input fundamental ac peak voltage to the output dc voltage. In one embodiment, the rectifier is used in dc-dc conversion. In one embodiment, the rectifier is used in ac power delivery to low-voltage electronics.
Type:
Grant
Filed:
August 13, 2013
Date of Patent:
September 20, 2016
Assignee:
Massachusetts Institute of Technology
Inventors:
David J. Perreault, Wei Li, Nathaniel Jay T. Salazar
Abstract: Photonic integrated circuits (PICs) are based on quantum cascade (QC) structures. In embodiment methods and corresponding devices, a QC layer in a wave confinement region of an integrated multi-layer semiconductor structure capable of producing optical gain is depleted of free charge carriers to create a low-loss optical wave confinement region in a portion of the structure. Ion implantation may be used to create energetically deep trap levels to trap free charge carriers. Other embodiments include modifying a region of a passive, depleted QC structure to produce an active region capable of optical gain. Gain or loss may also be modified by partially depleting or enhancing free charge carrier density. QC lasers and amplifiers may be integrated monolithically with each other or with passive waveguides and other passive devices in a self-aligned manner. Embodiments overcome challenges of high cost, complex fabrication, and coupling loss involved with material re-growth methods.
Type:
Grant
Filed:
July 25, 2013
Date of Patent:
September 20, 2016
Assignees:
Massachusetts Institute of Technology, Pendar Technologies, LLC
Inventors:
Anish K. Goyal, Laurent Diehl, Christian Pfluegl, Christine A. Wang, Mark Francis Witinski
Abstract: In illustrative implementations of this invention, an imaging system includes multiple light sources that illuminate a scene, and also includes a lock-in time of flight camera. While the scene is illuminated by these light sources, each of the light sources is amplitude-modulated by a different modulation pattern, and a reference signal is applied to the lock-in time-of-flight camera. The modulation patterns and the reference signal are carefully chosen such that the imaging system is able to disentangle, in real time, the respective contributions of the different light sources, and to compute, in real-time, depth of the scene. In some cases, the modulation signals for the light sources are orthogonal to each other and the reference signal is broadband. In some cases, the modulation codes for the light sources and the reference code are optimal codes that are determined by an optimization algorithm.
Abstract: Stereoselective and regioselective synthesis of compounds via nucleophilic ring opening reactions of aziridinium ions for use in stereoselective and regioselective synthesis of therapeutic and diagnostic compounds.
Abstract: In exemplary implementations of this invention, a camera can capture multiple millions of frames per second, such that each frame is 2D image, rather than a streak. A light source in the camera emits ultrashort pulses of light to illuminate a scene. Scattered light from the scene returns to the camera. This incoming light strikes a photocathode, which emits electrons, which are detected by a set of phosphor blocks, which emit light, which is detected by a light sensor. Voltage is applied to plates to create an electric field that deflects the electrons. The voltage varies in a temporal “stepladder” pattern, deflecting the electrons by different amounts, such that the electrons hit different phosphor blocks at different times during the sequence. Each phosphor block (together with the light sensor) captures a separate frame in the sequence. A mask may be used to increase resolution.
Abstract: An inter-domain virtual network mapping method, an inter-domain virtual network and an inter-domain virtual network mapping system are provided.
Type:
Grant
Filed:
July 31, 2014
Date of Patent:
September 20, 2016
Assignees:
Tsinghua University, Beijing Institute of Technology
Abstract: The invention provides inter alia methods for differentiating embryonic stem cells into insulin producing cells, as well as compositions comprising such cells, and therapeutic uses of such compositions.
Type:
Grant
Filed:
April 29, 2013
Date of Patent:
September 20, 2016
Assignee:
Massachusetts Institute of Technology
Inventors:
Clark K. Colton, Amanda Dilenno, Jeffrey R. Millman
Abstract: One aspect of the invention relates to an ultrathin micro-electromechanical chemical sensing device which uses swelling or straining of a reactive organic material for sensing. In certain embodiments, the device comprises a contact on-off switch chemical sensor. For example, the device can comprises a small gap separating two electrodes, wherein the gap can be closed as a result of the swelling or stressing of an organic polymer coating on one or both sides of the gap. In certain embodiments, the swelling or stressing is due to the organic polymer reacting with a target analyte.
Type:
Grant
Filed:
May 14, 2013
Date of Patent:
September 20, 2016
Assignee:
Massachusetts Institute of Technology
Inventors:
William Jay Arora, Karen K. Gleason, George Barbastathis, Wyatt E. Tenhaeff
Abstract: The invention provides delivery systems comprised of stabilized multilamellar vesicles, as well as compositions, methods of synthesis, and methods of use thereof. The stabilized multilamellar vesicles comprise terminal-cysteine-bearing antigens or cysteine-modified antigens, at their surface and/or internally.
Abstract: The attenuation and other optical properties of a medium are exploited to measure a thickness of the medium between a sensor and a target surface. Disclosed herein are various mediums, arrangements of hardware, and processing techniques that can be used to capture these thickness measurements and obtain dynamic three-dimensional images of the target surface in a variety of imaging contexts. This includes general techniques for imaging interior/concave surfaces as well as exterior/convex surfaces, as well as specific adaptations of these techniques to imaging ear canals, human dentition, and so forth.
Type:
Grant
Filed:
January 22, 2013
Date of Patent:
September 20, 2016
Assignee:
Massachusetts Institute of Technology
Inventors:
Douglas P. Hart, Federico Frigerio, Douglas M. Johnston, Manas C. Menon, Daniel Vlasic
Abstract: The invention is directed to a method of inducing angiogenesis at a site in an individual in need thereof comprising administering locally to the site an effective amount of one or more agents that induce hypoxia induced factor 1? (HIF-1?). In another aspect, the invention is directed to a method of inducing angiogenesis at a site in an individual in need thereof comprising administering locally to the site an effective amount of one or more agents that induce hypoxia induced factor 1? (HIF-1?) and one or more lysophospholipids. In addition, the invention is directed to methods of generating prevascularized tissue, methods of generating a vascular network in a device and compositions thereof.
Type:
Grant
Filed:
January 16, 2013
Date of Patent:
September 20, 2016
Assignees:
National University of Singapore, Massachusetts Institute of Technology
Inventors:
Michael Raghunath, Sei Hien Lim, Roger Dale Kamm
Abstract: Gene targeting is a technique to introduce genetic change into one or more specific locations in the genome of a cell. For example, gene targeting can introduce genetic change by modifying, repairing, attenuating or inactivating a target gene or other chromosomal DNA. In one aspect, this disclosure relates to methods and compositions for gene targeting with high efficiency in a cell. This disclosure also relates to methods of treating or preventing a genetic disease in an individual in need thereof. Further disclosed are chimeric nucleases and vectors encoding chimeric nucleases.
Abstract: In a method for controlling energy damping in a shape memory alloy, provided is a shape memory alloy having a composition including at least one of: Cu in at least about 10 wt. %, Fe in at least about 5 wt. %, Au in at least about 5 wt. %, Ag in at least about 5 wt. %, Al in at least about 5 wt. %, In in at least about 5 wt. %, Mn in at least about 5 wt. %, Zn in at least about 5 wt. % and Co in at least about 5 wt. %. The shape memory alloy is configured into a structure including a structural feature having a surface roughness and having a feature extent that is greater than about 1 micron and less than about 1 millimeter. Energy damping of the structural feature is modified by exposing the structural feature to process conditions that alter the surface roughness of the structural feature.