Patents Assigned to Integran Technologies Inc.
  • Publication number: 20080254310
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: June 11, 2008
    Publication date: October 16, 2008
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Patent number: 7387578
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: June 17, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, David Limoges, Uwe Erb
  • Publication number: 20080119307
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: December 14, 2007
    Publication date: May 22, 2008
    Applicant: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Publication number: 20080107805
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 8, 2008
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Dachyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20080090066
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: December 12, 2007
    Publication date: April 17, 2008
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Patent number: 7354354
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: April 8, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Patent number: 7320832
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 22, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20060292388
    Abstract: Metallic stents which have a randomly oriented microstructure, and possess quasi-isotropic mechanical and physical properties are disclosed. The novel stents can be “tailor-made” to mimic the geometry of the blood vessel(s) at the deployment site and can be designed to treat coronary artery disease at the point where blood vessels branch. The metallic materials of choice are ductile, corrosion resistant and exhibit little crystallographic texture. The novel stents can be produced from a metallic precursor which is quasi-isotropic and exhibits little texture by processing means, such as machining, which do not reintroduce texture. Alternatively, quasi-isotropic and low texture stents are achieved by suitable post-processing of conventionally fabricated stent materials.
    Type: Application
    Filed: June 22, 2005
    Publication date: December 28, 2006
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Gino Palumbo, Peter Lin, Klaus Tomantschger, Fred Smith
  • Publication number: 20060135282
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: December 15, 2005
    Publication date: June 22, 2006
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Publication number: 20060135281
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, David Limoges, Uwe Erb
  • Patent number: 6802917
    Abstract: A process for enhancing chemical stability and corrosion resistance is described for perforated current collectors made by continuous production processes for use in electrochemical cells, including storage batteries such as lead-acid batteries. The process relies on utilizing a strip processing method, selected from the group of reciprocating expansion, rotary expansion and punching, to perforate the solid metal strip to form a grid or mesh, as a deformation treatment. The perforation-deformation treatment is followed in rapid succession by a heat-treatment to obtain a recrystallized microstructure in the current collector and optionally by quenching to rapidly reduce the temperature to below approximately 80° C. The process yields an improved microstructure consisting of a high frequency of special low &Sgr; CSL grain boundaries (>50%), exhibiting significantly improved resistance to intergranular corrosion and cracking.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: October 12, 2004
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, David L. Limoges, Peter K. Lin, Gino Palumbo
  • Patent number: 6610154
    Abstract: A surface treatment process for enhancing the resistance to intergranular corrosion and intergranular cracking of components fabricated from austenitic Ni—Fe—Cr based alloys comprising the application of surface deformation to the component, to a depth in the range of 0.01 mm to 0.5 mm, for example by high intensity shot peening below the recrystallization temperature, followed by recrystallization heat treatment, preferably at solutionizing temperatures. The surface deformation and annealing process can be repeated to further optimize the microstructure of the near-surface region. Following the final heat treatment, the process optionally comprises the application of further surface deformation (work) of reduced intensity, yielding a worked depth of between 0.005 mm to 0.01 mm, to impart residual compression in the near surface region to further enhance cracking resistance.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: August 26, 2003
    Assignee: Integran Technologies Inc.
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin
  • Patent number: 6592686
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: July 15, 2003
    Assignee: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6589298
    Abstract: A process for enhancing chemical stability, corrosion resistance and for improved adhesion characteristics is described for use on metal or metal-alloy non-consumable electrodes, current collectors or other metallic articles used in electrochemical cells. The process includes peening of the article, optionally followed by an annealing treatment.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: July 8, 2003
    Assignee: Integran Technologies, Inc.
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin, Klaus Tomantschger
  • Publication number: 20020050311
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Application
    Filed: August 24, 2001
    Publication date: May 2, 2002
    Applicant: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6344097
    Abstract: A surface treatment process for enhancing the intergranular corrosion and intergranular cracking resistance of components fabricated from austenitic Ni—Fe—Cr based alloys comprised of the application of surface cold work to a depth in the range of 0.01 mm to 0.5 mm, for example by high intensity shot peening, followed by recrystallization heat treatment preferably at solutionizing temperatures (>900 C.). The surface cold work and annealing process can be repeated to further optimize the microstructure of the near-surface region. Following the final heat treatment, the process can optionally comprise the application of surface cold work of reduced intensity, yielding a cold worked depth of 0.005 mm to 0.01 mm, in order further enhance resistance to cracking by rendering the near surface in residual compression.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: February 5, 2002
    Assignee: Integran Technologies Inc.
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin
  • Patent number: 6342110
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: January 29, 2002
    Assignee: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6129795
    Abstract: A method is provided for improving the microstructure of nickel and iron-based precipitation strengthened superalloys used in high temperature applications by increasing the frequency of "special", low-.SIGMA. CSL grain boundaries to levels in excess of 50%. Processing entails applying specific thermomechanical processing sequences to precipitation hardenable alloys comprising a series of cold deformation and recrystallization-annealing steps performed within specific limits of deformation, temperature, and annealing time. Materials produced by this process exhibit significantly improved resistance to high temperature degradation (eg. creep, hot corrosion, etc.), enhanced weldability, and high cycle fatigue resistance.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: October 10, 2000
    Assignee: Integran Technologies Inc.
    Inventors: Edward M. Lehockey, Gino Palumbo, Peter Keng-Yu Lin, David L. Limoges