Patents Assigned to International Superconductivity Technology Center
  • Publication number: 20100282244
    Abstract: This invention provides a heat treatment apparatus for an oxide superconducting wire that is easy to control atmosphere during baking and can realize a high manufacturing speed. A heat treatment apparatus (1) comprises a heat treating furnace (4) and a cylindrical rotator (5), rotatable about a horizontal rotating axis, provided within the heat treating furnace (4). The rotator (5) in its cylindrical body (5a) have a number of through-holes (5b) formed evenly over the whole surface of the cylindrical body (5a). One end of the cylindrical body (5a) is hermetically sealed by a lid. On the other end, a gas discharge pipe (7) for discharging gas within the cylindrical body to the outside of the heat treating furnace (4) is connected to the lid. A plurality of gas supply pipes (8) are symmetrically provided separately from each other on the outer surface of the cylindrical body (5a).
    Type: Application
    Filed: January 10, 2007
    Publication date: November 11, 2010
    Applicants: SWCC SHOWA CABLE SYSTEMS CO., LTD., INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, THE JURIDICAL FOUNDATION
    Inventors: Takayo Hasegawa, Tsutomu Koizumi
  • Patent number: 7777602
    Abstract: Tape-shaped superconducting wires, and a superconducting coil formed from said wires, wherein a plurality of electrically separated superconducting film parts, each having a rectangular cross section and arranged in parallel, form parallel conductors, providing superconducting wires capable of containing losses incurred in the presence of alternating current (A/C). A superconducting coil is made by winding the superconducting wires, wherein the coil structure contains at least a part wherein perpendicular interlinkage magnetic fluxes acting among conductor elements of the parallel conductors by the distribution of magnetic fields generated by the superconducting coils cancel mutually in order to contain circulating current within the wires and to make shunt current uniform, thereby providing a low-loss A/C superconducting coil.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 17, 2010
    Assignees: International Superconductivity Technology Center, Juridical Foundation, Fuji Electric Systems Co., Ltd., Fujikura Ltd.
    Inventors: Kazuo Funaki, Masataka Iwakuma, Takanobu Kisu, Akira Tomioka, Toshio Uede, Hiroshi Fuji, Teruo Izumi, Yuh Shiohara
  • Publication number: 20100197506
    Abstract: This invention provides a tape-shaped oxide superconductor which can prevent the diffusion of elements constituting a metallic substrate into a superconducting layer and cracking of an intermediate layer and improve the orientation of the superconducting layer. A 15 to 100 nm-thick Ce—Gd—O-based oxide layer (2) (Ce:Gd=40:60 to 70:30 molar ratio) as a first intermediate layer and a 100 nm-thick Ce—Zr—O-based oxide layer (3) (Ce:Zr=50:50 molar ratio) as a second intermediate layer are formed by an MOD method on an Ni-base alloy substrate (1) having a half value width (FMHW: ??) of 6.5 degrees. A 150 nm-thick CeO2 oxide layer (4) as a third intermediate layer is further formed on the second intermediate layer by an RF sputtering method. A 1 ?m-thick YBCO superconducting layer (5) is formed by a TFA-MOD method on the intermediate layer having a three-layer structure. In the tape-shaped oxide superconductor, the ?? values of the first to third intermediate layers are (6.0 to 6.5) degrees, (6.0 to 6.
    Type: Application
    Filed: May 7, 2008
    Publication date: August 5, 2010
    Applicants: SWCC SHOWA CABLE SYSTEMS CO., LTD, INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, THE JURIDICAL FOUNDATION
    Inventors: Yasuo Takahashi, Tsutomu Koizumi, Yuji Aoki, Atsushi Kaneko, Takayo Hasegawa
  • Patent number: 7732376
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 8, 2010
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7691786
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: April 6, 2010
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7662749
    Abstract: On a first intermediate layer provided on a substrate and having an excellent surface smoothness, are formed a second intermediate layer and an YBCO superconductor layer having excellent properties. An YBCO superconductor (10) having a critical current density (Jc) of 1 MA/cm2 or higher can be produced by forming a first intermediate layer (2), a second intermediate layer (3), an YBCO superconductor layer (4) and an Ag-stabilized layer (5) on the surface of a tape-shaped biaxially oriented Ni—W alloy substrate (1), wherein the first intermediate layer (2) has a thickness of 5 nm or less, has a surface smoothness, comprises A2Zr2O7, and is formed by repeating coating and provisional burning several times by the MOD method, the second intermediate layer (3) comprises a CeO2 film and is formed by the pulse plating method, the YBCO superconductor layer (4) is formed by the MOD method, and the Ag-stabilized layer (5) is formed on the YBCO superconductor layer (4).
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: February 16, 2010
    Assignees: International Superconductivity Technology Center, the Juridical Foundation, SWCC Showa Cable Systems Co., Ltd.
    Inventors: Takayo Hasegawa, Yasuo Takahashi
  • Publication number: 20100012349
    Abstract: An object of the invention is to provide a polycrystalline thin film which includes an intermediate layer that is made thinner while keeping high crystal orientation so as to prevent warpage of a substrate resulting from internal stress of the film. A polycrystalline thin film according to the invention includes an intermediate layer formed by a first layer and a second layer laminated in this order and provided on a metal substrate. The first layer has a rock-salt crystal structure and the second layer has a fluorite crystal structure.
    Type: Application
    Filed: September 29, 2009
    Publication date: January 21, 2010
    Applicants: Fujikara Ltd., International Superconductivity Technology Center
    Inventors: Yasuhiro IIJIMA, Satoru Hanyu
  • Publication number: 20090286686
    Abstract: This invention provides a production process of a thick-film tape-shaped RE-type (123) superconductor having a high critical current value. The production process comprises providing a composite substrate comprising Gd2Zr2O7 and CeO2 stacked in that order onto a Hastelloy substrate, coating a raw material solution prepared by dissolving a trifluoroacetate of Y and Ba and a naphthenate of Cu onto the composite substrate, heat treating the coated composite substrate by calcination, then subjecting the calcined assembly to intermediate heat-treatment at a temperature below the temperature of heat-treatment for superconductor production, and then heat treating the assembly in an argon gas atmosphere under conditions of highest heating temperature 760° C., water vapor partial pressure 13.5%, and oxygen partial pressure 0.09% for superconductor production to produce a tape-shaped RE-type (123) superconductor comprising a YBCO superconducting film having a thickness of more than about 2 ?m.
    Type: Application
    Filed: December 7, 2006
    Publication date: November 19, 2009
    Applicants: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER THE JURIDICAL FOUNDATION, SWCC SHOWA CABLE SYSTEMS CO., LTD.
    Inventors: Ryo Teranishi, Yuji Aoki, Junko Matsuda, Koichi Nakaoka, Teruo Izumi, Yuh Shiohara
  • Patent number: 7615515
    Abstract: An oxide superconductor includes a main component represented by the following formula: LnBa2Cu3O7-x, where Ln comprises two or more types of elements selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, and Y, and a content of each element is 10 to 90 mol %, and fluorine at a molar ratio of 10?2 to 10?6 with respect to copper.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 10, 2009
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20090270263
    Abstract: This invention provides a production process of a tape-shaped superconductor which can realize high Jc and Ic values by virtue of the elimination of the cause of generation of cracks and deterioration of an electrical connectivity in crystal grain boundaries. In producing an Re-base (123) superconductor on a substrate by an MAD process, the use of a raw material solution having a Re:Ba:Cu molar ratio of 1:X:3, wherein X is a Ba molar ratio satisfying X<2 (preferably 1.0?X?1.8, especially 1.3?x?1.7), can realize the production of a thick-film tape-shaped superconductor having a superconductivity of Jc=3.20 MA/cm2 and Ic=525 A/cm (X=1.5).
    Type: Application
    Filed: June 12, 2007
    Publication date: October 29, 2009
    Applicants: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, THE JURIDICAL FOUNDATION, SWCC SHOWA CABLE SYSTEMS CO., LTD.
    Inventors: Yuji Aoki, Koichi Nakaoka, Junko Matsuda, Masateru Yoshizumi, Teruo Izumi, Yuh Shiohara
  • Publication number: 20090239753
    Abstract: A method of manufacturing a superconducting thin film material includes a vapor phase step of forming a superconducting layer by a vapor phase method and a liquid phase step of forming a superconducting layer by a liquid phase method so that the latter superconducting layer is in contact with the former superconducting layer. Preferably, the method further includes the step of forming an intermediate layer between the former superconducting layer and a metal substrate. The metal substrate is made of a metal, and preferably the intermediate layer is made of an oxide having a crystal structure of any of rock type, perovskite type and pyrochlore type, and the former superconducting layer and the latter superconducting layer both have an RE123 composition. Accordingly, the critical current value can be improved.
    Type: Application
    Filed: January 17, 2007
    Publication date: September 24, 2009
    Applicant: International Superconductivity Technology Center, the Juridical Foundation
    Inventors: Shuji Hahakura, Kazuya Ohmatsu, Munetsugu Ueyama, Katsuya Hasegawa
  • Publication number: 20090170708
    Abstract: Tape-shaped superconducting wires, and a superconducting coil formed from said wires, wherein a plurality of electrically separated superconducting film parts, each having a rectangular cross section and arranged in parallel, form parallel conductors, providing superconducting wires capable of containing losses incurred in the presence of alternating current (A/C). A superconducting coil is made by winding the superconducting wires, wherein the coil structure contains at least a part wherein perpendicular interlinkage magnetic fluxes acting among conductor elements of the parallel conductors by the distribution of magnetic fields generated by the superconducting coils cancel mutually in order to contain circulating current within the wires and to make shunt current uniform, thereby providing a low-loss A/C superconducting coil.
    Type: Application
    Filed: October 3, 2008
    Publication date: July 2, 2009
    Applicants: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, THE JURIDICIAL FOUNDATION, FUJI ELECTRIC SYSTEMS CO., LTD., FUJIKURA LTD., KAZUO FUNAKI, MASATAKA IWAKUMA, TAKANOBU KISU
    Inventors: Kazuo Funaki, Masataka Iwakuma, Takanobu Kisu, Akira Tomioka, Toshio Uede, Hiroshi Fuji, Teruo Izumi, Yuh Shiohara
  • Publication number: 20090137400
    Abstract: A superconducting thin film material that can realize attainment of an excellent property such as a high JC and a high IC and reduction of costs at the same time includes an orientated metal substrate and an oxide superconductor film formed on the orientated metal substrate. The oxide superconductor film includes a physical vapor deposition HoBCO layer formed by a physical vapor deposition method, and a metal organic deposition HoBCO layer formed on the physical vapor deposition HoBCO layer by a metal organic deposition method.
    Type: Application
    Filed: April 20, 2007
    Publication date: May 28, 2009
    Applicants: Sumitomo Electric Industries, Ltd., International Superconductivity Technology Center, the Juridical Foundation
    Inventors: Shuji Hahakura, Kazuya Ohmatsu, Munetsugu Ueyama, Katsuya Hasegawa
  • Publication number: 20090069187
    Abstract: On a first intermediate layer provided on a substrate and having an excellent surface smoothness, are formed a second intermediate layer and an YBCO superconductor layer having excellent properties. An YBCO superconductor (10) having a critical current density (Jc) of 1 MA/cm2 or higher can be produced by forming a first intermediate layer (2), a second intermediate layer (3), an YBCO superconductor layer (4) and an Ag-stabilized layer (5) on the surface of a tape-shaped biaxially oriented Ni—W alloy substrate (1), wherein the first intermediate layer (2) has a thickness of 5 nm or less, has a surface smoothness, comprises A2Zr2O7, and is formed by repeating coating and provisional burning several times by the MOD method, the second intermediate layer (3) comprises a CeO2 film and is formed by the pulse plating method, the YBCO superconductor layer (4) is formed by the MOD method, and the Ag-stabilized layer (5) is formed on the YBCO superconductor layer (4).
    Type: Application
    Filed: January 10, 2007
    Publication date: March 12, 2009
    Applicants: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER,, SWCC SHOWA CABLE SYSTEMS CO., LTD.
    Inventors: Takayo Hasegawa, Yasuo Takahashi
  • Patent number: 7473670
    Abstract: RE superconductive layer of high critical current density (Jc) is superimposed on an interlayer formed so as to, while ensuring cracking prevention, excel in crystallinity, such as in-plane orientation degree and direction, and surface smoothness. On an oriented Ni substrate, there are sequentially superimposed an interlayer of cerium oxide loaded with 20 to 60 mol %, in terms of metal content, of one or at least two rare earth elements according to MOD technique and an RE superconductive layer of high Jc according to MOD technique. The above interlayer is formed by mixing a Gd, Y and/or Yb organometallic compound solution with a Ce organometallic compound solution, applying the mixed solution onto an oriented Ni substrate so as to form a coating film and subjecting the coating film to calcination heat treatment and thereafter firing in an Ar—H2 atmosphere at 950 to 1150° C. under a pressure of 50 to 500 Pa. YBCO superconductive layer is formed on this interlayer according to TFA-MOD technique.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: January 6, 2009
    Assignees: International Superconductivity Technology Center, The Juridical Foundation, The Furukawa Electric Co., Ltd., SWCC Showa Cable Systems Co., Ltd.
    Inventors: Yasuo Takahashi, Yuji Aoki, Takayo Hasegawa
  • Patent number: 7453340
    Abstract: Tape-shaped superconducting wires, and a superconducting coil formed from said wires, wherein a plurality of electrically separated superconducting film parts, each having a rectangular cross section and arranged in parallel, form parallel conductors, providing superconducting wires capable of containing losses incurred in the presence of alternating current (A/C). A superconducting coil is made by winding the superconducting wires, wherein the coil structure contains at least a part wherein perpendicular interlinkage magnetic fluxes acting among conductor elements of the parallel conductors by the distribution of magnetic fields generated by the superconducting coils cancel mutually in order to contain circulating current within the wires and to make shunt current uniform, thereby providing a low-loss A/C superconducting coil.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: November 18, 2008
    Assignees: International Superconductivity Technology Center, The Juridical Foundation, Fuji Electric Systems Co., Ltd., Fujikura Ltd.
    Inventors: Kazuo Funaki, Masataka Iwakuma, Takanobu Kisu, Akira Tomioka, Toshio Uede, Hiroshi Fuji, Teruo Izumi, Yuh Shiohara
  • Patent number: 7449769
    Abstract: A superconducting system that includes an interface circuit capable of making the best use of a high-speed superconducting circuit and a high-speed semiconductor circuit. A multi-chip module in which an Nb superconducting circuit having Josephson junctions formed by the use of Nb and an oxide high-temperature superconducting latch interface circuit having Josephson junctions formed by the use of an oxide high-temperature superconductor are connected is located in a low temperature environment kept at 4.2 K. The oxide high-temperature superconducting latch interface circuit is connected to a high-speed semiconductor amplifier and a signal outputted from the Nb superconducting circuit is transmitted to the high-speed semiconductor amplifier.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 11, 2008
    Assignees: Fujitsu Limited, International Superconductivity Technology Center, The Juridical Foundation
    Inventor: Tsunehiro Hato
  • Patent number: 7431868
    Abstract: A metal substrate for an oxide superconducting wire, which comprises a polycrystalline metal substrate with a rolled aggregate structure having a {100} plane which is parallel to the rolled surface and a <001> axis which is parallel to the rolling direction, and an oxide crystal layer comprising an oxide of the polycrystalline metal and formed on a surface of the polycrystalline metal substrate, wherein at least 90% of grain boundaries in the oxide crystal layer have an inclination of 10° or less, and at least 90% of the {100} plane of the oxide crystal layer make an angle of 10° or less with the surface of the polycrystalline metal substrate.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 7, 2008
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Technology Center, Sumitomo Electric Industries Ltd.
    Inventors: Toshihiko Maeda, Toru Izumi, Katsuya Hasegawa, Shigenobu Asada, Teruo Izumi, Yuh Shiohara
  • Patent number: 7417425
    Abstract: A continuous observation apparatus of magnetic flux distribution in which a long sample containing a superconducting material or magnetic material is transferred to an observation position and magnetic flux is observed sequentially at each of certain areas along a longitudinal direction of the sample is provided. A method of continuously observing magnetic flux by which a long sample containing a superconducting material or magnetic material is transferred to an observation position and magnetic flux is observed sequentially at each of certain areas along a longitudinal direction of the sample is also provided.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 26, 2008
    Assignees: International Superconductivity Technology Center,the Juridical foundation, Fujikura Ltd.
    Inventors: Takato Machi, Noriko Chikumoto, Koichi Nakao, Hiroshi Fuji, Yutaka Kitoh, Teruo Izumi, Yuh Shiohara
  • Patent number: 7394338
    Abstract: In one embodiment, a superconducting coil includes a tertiary parallel superconductor unit (60) composed of superposed in parallel a plurality of layers of secondary parallel superconductor units (50). The layers of secondary parallel superconductor units include a plurality of superconductor elements (40) arranged in parallel along the axial direction of the coil, forming a superconducting conductor unit. The tertiary parallel superconductor unit is wound on a bobbin (55). In another embodiment, the superconducting coil includes one or more layers of the secondary parallel superconductor unit wound on the bobbin. In both embodiments, the secondary parallel superconductor unit can include at least one non-superconducting conductor element (70). The layer of the secondary parallel superconductor unit forming an outer side of the tertiary parallel superconductor unit can include at least one non-superconducting conductor element.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: July 1, 2008
    Assignees: Fuji Electric Systems Co., Ltd., Fujikura Ltd., Railway Technical Research Institute, Superconductivity Research Laboratory, International Superconductivity Technology Center, The Juridical Foundation, Kyushu Electric Power Co., Inc.
    Inventors: Masataka Iwakuma, Akira Tomioka, Masayuki Konno, Hiroshi Fuji, Kenji Suzuki, Teruo Izumi, Yuh Shiohara, Hidemi Hayashi