Patents Assigned to INVENSENSE
  • Patent number: 12286342
    Abstract: Embodiments for constant charge or capacitance for capacitive micro-electro-mechanical system (MEMS) sensors are presented herein. A MEMS device comprises a sense element circuit comprising a bias resistance, a charge-pump, and a capacitive sense element comprising an electrode and a sense capacitance. The charge-pump generates, at a bias resistor electrically coupled to the electrode, a bias voltage that is inversely proportional to a capacitance value comprising a value of the sense capacitance to facilitate maintenance of a nominally constant charge on the electrode. A sensing circuit comprises an alternating current (AC) signal source that generates an AC signal at a defined frequency; and generates, based on the AC signal, an AC test voltage at a test capacitance that is electrically coupled to the electrode. The sense element circuit generates, based on the AC test voltage at the defined frequency, an output signal representing the value of the sense capacitance.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: April 29, 2025
    Assignee: INVENSENSE, INC.
    Inventor: Joseph Seeger
  • Patent number: 12245004
    Abstract: Acoustic and other activity detection signaling is provided herein. Operations of a method can include determining a micro-electromechanical system (MEMS) device is no longer in an initialization state and receiving a first signal that instructs the MEMS device to perform event activity detection. The method can also include receiving one or more event signals and determining that an event signal of one or more event signals satisfies a defined event characteristic. The method can also include outputting a second signal that comprises information indicative of a detection of event activity at the MEMS device being more than the defined event characteristic.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: March 4, 2025
    Assignee: INVENSENSE, INC.
    Inventors: Miro Svajda, Stefano Riva
  • Patent number: 12238481
    Abstract: Acoustic activity detection is provided herein. Operations of a method can include receiving an acoustic signal at a micro-electromechanical system (MEMS) microphone. Based on portions of the acoustic signal being determined to exceed a threshold signal level, output pulses are generated. Further, the method can include extracting information representative of a frequency of the acoustic signal based on respective spacing between rising edges of the output pulses.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: February 25, 2025
    Assignee: INVENSENSE, INC.
    Inventors: Tomas Pitak, Igor Mucha, Robert Dick, Michael Tuttle
  • Patent number: 12228404
    Abstract: A dynamically balanced 3-axis gyroscope architecture is provided. Various embodiments described herein can facilitate providing linear and angular momentum balanced 3-axis gyroscope architectures for better offset stability, vibration rejection, and lower part-to-part coupling.
    Type: Grant
    Filed: June 13, 2023
    Date of Patent: February 18, 2025
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joseph Seeger
  • Patent number: 12192704
    Abstract: The present invention relates to a microelectromechanical system (MEMS) microphone array capsule. In one embodiment, a MEMS microphone includes a MEMS microphone die; an acoustic sensor array formed into the MEMS microphone die, the acoustic sensor array comprising a plurality of MEMS acoustic sensor elements, wherein respective ones of the plurality of MEMS acoustic sensor elements are tuned to different resonant frequencies; and an interconnect that electrically couples the acoustic sensor array to an impedance converter circuit.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 7, 2025
    Assignee: INVENSENSE, INC.
    Inventor: Jeremy Parker
  • Patent number: 12170869
    Abstract: The present invention relates to a fixed-fixed membrane for a microelectromechanical system (MEMS) microphone. In one embodiment, a MEMS acoustic sensor includes a substrate; a membrane situated parallel to the substrate; and at least one vent formed into the membrane, wherein the at least one vent is a curved opening in the membrane, and wherein the at least one vent is disposed substantially along a length of the membrane.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: December 17, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Sushil Bharatan, Andrew Randles, Michael John Foster
  • Patent number: 12139397
    Abstract: Selective self-assembled monolayer patterning with sacrificial layer for devices is provided herein. A sensor device can include a handle layer and a device layer that comprises a first side and a second side. First portions of the first side are operatively connected to defined portions of the handle layer. At least one area of the second side comprises an anti-stiction area formed with an anti-stiction coating. The device can also include a Complementary Metal-Oxide-Semiconductor (CMOS) wafer operatively connected to second portions of the second side of the device layer. The CMOS wafer comprises at least one bump stop. The anti-stiction area faces the at least one bump stop.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: November 12, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Daesung Lee, Alan Cuthbertson
  • Patent number: 12136904
    Abstract: Disclosed embodiments provide flexible performance, high dynamic range, microelectromechanical (MEMS) multipath digital microphones, which allow seamless, low latency transitions between audio signal paths without audible artifacts over interruptions in the audio output signal. Disclosed embodiments facilitate performance and power saving mode transitions maintaining high dynamic range capability.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: November 5, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Stefano Valle, Igor Mucha, Alessandro Magnani, Nicola Vannucci
  • Patent number: 12069430
    Abstract: Disclosed embodiments provide flexible performance, high dynamic range, microelectromechanical (MEMS) multipath digital microphones, which allow seamless, low latency transitions between audio signal paths without audible artifacts over interruptions in the audio output signal. Disclosed embodiments facilitate performance and power saving mode transitions maintaining high dynamic range capability.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: August 20, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Stefano Valle, Igor Mucha, Alessandro Magnani
  • Patent number: 12013282
    Abstract: An alternate venting path can be employed in a sensor device for pressure equalization. A sensor component of the device can comprise a diaphragm component and/or backplate component disposed over an acoustic port of the device. The diaphragm component can be formed with no holes to prevent liquid or particles from entering a back cavity of the device, or gap between the diaphragm component and backplate component. A venting port can be formed in the device to create an alternate venting path to the back cavity for pressure equalization for the diaphragm component. A venting component, comprising a filter, membrane, and/or hydrophobic coating, can be associated with the venting port to inhibit liquid and particles from entering the back cavity via the venting port, without degrading performance of the device. The venting component can be designed to achieve a desired low frequency corner of the sensor frequency response.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: June 18, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Jeremy Parker, Kieran Harney
  • Patent number: 11990917
    Abstract: The present invention relates to an incremental analog to digital converter incorporating noise shaping and residual error quantization. In one embodiment, a circuit includes an incremental analog to digital converter, comprising a loop filter that filters an analog input signal in response to receiving a reset signal, resulting in a filtered analog input signal, and a successive approximation register (SAR) quantizer, coupled with the filtered analog input signal, that converts the filtered analog input signal to an intermediate digitized output of a first resolution based on a reference voltage, wherein the SAR quantizer comprises a feedback loop that shapes quantization noise generated by the SAR quantizer as a result of converting the filtered analog input signal; and a digital filter, coupled with the intermediate digitized output, that generates a digitized output signal of a second resolution, greater than the first resolution, by digitally filtering the intermediate digitized output.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: May 21, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Omid Oliaei, Stephen Bart
  • Patent number: 11955993
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: April 9, 2024
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Patent number: 11952267
    Abstract: A modification to rough polysilicon using ion implantation and silicide is provided herein. A method can comprise depositing a hard mask on a single crystal silicon, patterning the hard mask, and depositing metal on the single crystal silicon. The method also can comprise forming silicide based on causing the metal to react with exposed silicon of the single crystal silicon. Further, the method can comprise removing unreacted metal and stripping the hard mask from the single crystal silicon. Another method can comprise forming a MEMS layer based on fusion bonding a handle MEMS with a device layer. The method also can comprise implanting rough polysilicon on the device layer. Implanting the rough polysilicon can comprise performing ion implantation of the rough polysilicon. Further, the method can comprise performing high temperature annealing. The high temperature can comprise a temperature in a range between around 700 and 1100 degrees Celsius.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 9, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Alan Cuthbertson, Daesung Lee
  • Patent number: 11945713
    Abstract: Systems and methods are provided that provide a getter in a micromechanical system. In some embodiments, a microelectromechanical system (MEMS) is bonded to a substrate. The MEMS and the substrate have a first cavity and a second cavity therebetween. A first getter is provided on the substrate in the first cavity and integrated with an electrode. A second getter is provided in the first cavity over a passivation layer on the substrate. In some embodiments, the first cavity is a gyroscope cavity, and the second cavity is an accelerometer cavity.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 2, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Daesung Lee, Jeff Chunchieh Huang, Jongwoo Shin, Bongsang Kim, Logeeswaran Veerayah Jayaraman
  • Patent number: 11933648
    Abstract: The described technology is generally directed towards a sensor output digitizer. The sensor output digitizer can comprise a multiplexer stage, a multi-stage analog to digital converter, and a digital output combiner. The multiplexer stage can be configured to sequentially select sensor outputs from one or more sensors, resulting in a stream of selected sensor outputs. The multi-stage analog to digital converter can be coupled with the multiplexer stage, and can be configured to convert the stream of selected sensor outputs into a stream of digitized outputs. The digital output combiner can be configured to re-scale and sum intermediate outputs of the multi-stage analog to digital converter to produce a stream of digitized sensor outputs.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: March 19, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Federico Mazzarella, Massimiliano Musazzi
  • Patent number: 11913788
    Abstract: A round robin sensor device for processing sensor data is provided herein. The sensor device includes a multiplexer stage configured to sequentially select sensor outputs from one or more sensors continuously. Continuously and sequentially selecting sensor outputs results in a stream of selected sensor outputs. The sensor device also includes a charge-to-voltage converter operatively coupled to the multiplexer stage and configured to convert a charge from a first sensor of the one or more sensors to a voltage. Further, the sensor device includes a resettable integrator operatively coupled to the charge-to-voltage converter and configured to demodulate and integrate the voltage, resulting in an integrated voltage. Also included in the sensor device is an analog-to-digital converter operatively coupled to the resettable integrator and configured to digitize the integrated voltage to a digital code.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: February 27, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Vadim Tsinker, Frederico Mazzarella, Ali Shirvani
  • Patent number: 11888455
    Abstract: Disclosed embodiments provide glitch prediction based on machine learning algorithms in mixed analog and digital systems, particularly directed to digital microelectromechanical (MEMS) multipath acoustic sensors or microphones, which allow seamless, low latency gain changes without audible artifacts or interruptions in the audio output signal.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 30, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Stefano Valle, Alessandro Magnani, Pascal Trotta
  • Patent number: 11881874
    Abstract: A motion sensor with sigma-delta analog-to-digital converter (ADC) having improved bias instability is presented herein. Differential outputs of a differential amplifier of the sigma-delta ADC are electrically coupled, via respective capacitances, to differential inputs of the differential amplifier. To minimize bias instability corresponding to flicker noise that has been injected into the differential inputs, the differential inputs are electrically coupled, via respective pairs of electronic switches, to feedback resistances based on a pair of switch control signals. In this regard, a first feedback resistance of the feedback resistances is electrically coupled to a first defined voltage, and a second feedback resistance of the feedback resistances is electrically coupled to a second defined reference voltage.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: January 23, 2024
    Assignee: INVENSENSE, INC.
    Inventor: Gabriele Pelli
  • Patent number: 11847851
    Abstract: Microelectromechanical (MEMS) devices and associated methods are disclosed. Piezoelectric MEMS transducers (PMUTs) suitable for integration with complementary metal oxide semiconductor (CMOS) integrated circuit (IC), as well as PMUT arrays having high fill factor for fingerprint sensing, are described.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Julius Ming-Lin Tsai, Mike Daneman, Sanjiv Kapoor
  • Patent number: 11846648
    Abstract: A microelectromechanical system device is described. The microelectromechanical system device can comprise: a proof mass coupled to an anchor via a spring, wherein the proof mass moves in response to an imposition of an external load to the proof mass, and an overtravel stop comprising a first portion and a second portion.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Robert Walmsley