Patents Assigned to INVENSENSE
  • Patent number: 11952267
    Abstract: A modification to rough polysilicon using ion implantation and silicide is provided herein. A method can comprise depositing a hard mask on a single crystal silicon, patterning the hard mask, and depositing metal on the single crystal silicon. The method also can comprise forming silicide based on causing the metal to react with exposed silicon of the single crystal silicon. Further, the method can comprise removing unreacted metal and stripping the hard mask from the single crystal silicon. Another method can comprise forming a MEMS layer based on fusion bonding a handle MEMS with a device layer. The method also can comprise implanting rough polysilicon on the device layer. Implanting the rough polysilicon can comprise performing ion implantation of the rough polysilicon. Further, the method can comprise performing high temperature annealing. The high temperature can comprise a temperature in a range between around 700 and 1100 degrees Celsius.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 9, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Alan Cuthbertson, Daesung Lee
  • Patent number: 11955993
    Abstract: An audio activity detector device is disclosed. The audio activity detector device comprises a closed loop feedback regulating circuit that supplies an input signal representative of a time-varying voltage signal to a quantizer circuit, wherein the quantizer circuit, as a function of the input signal, converts the input signal to a quantizer discrete-time signal; a first circuit that, as a function of the discrete-time signal, determines a key quantizer statistic value for the quantizer discrete-time signal; and a second circuit that, as a function of the key quantizer statistic value, determines a signal statistic value for the input signal and a gain control value.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: April 9, 2024
    Assignee: INVENSENSE, INC.
    Inventor: Michael Perrott
  • Patent number: 11945713
    Abstract: Systems and methods are provided that provide a getter in a micromechanical system. In some embodiments, a microelectromechanical system (MEMS) is bonded to a substrate. The MEMS and the substrate have a first cavity and a second cavity therebetween. A first getter is provided on the substrate in the first cavity and integrated with an electrode. A second getter is provided in the first cavity over a passivation layer on the substrate. In some embodiments, the first cavity is a gyroscope cavity, and the second cavity is an accelerometer cavity.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 2, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Daesung Lee, Jeff Chunchieh Huang, Jongwoo Shin, Bongsang Kim, Logeeswaran Veerayah Jayaraman
  • Patent number: 11938515
    Abstract: The teachings of the present disclosure enable the manufacture of one or more piezoelectric micromachined ultrasonic transducers (PMUTs) having a resonant frequency of a specific target value and/or substantially matched resonant frequencies. In accordance with the present disclosure, a flexible membrane of a PMUT is modified to impart a desired parameter profile for stiffness and/or mass to tune its resonant frequency to a target value. The desired parameter profile is achieved by locally removing or adding material to regions of one or more layers of the flexible membrane to alter its geometric dimensions and/or density. In some embodiments, material is added or removed non-uniformly across the structural layer to realize a material distribution that more strongly affects membrane stiffness than mass. In some embodiments, material having a specific residual stress is added to, and/or removed from, the membrane to define a desired modal stiffness for the membrane.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 26, 2024
    Assignee: InvenSense, Inc.
    Inventors: Fabian Goericke, Stefon Shelton, Benedict Costello
  • Patent number: 11933648
    Abstract: The described technology is generally directed towards a sensor output digitizer. The sensor output digitizer can comprise a multiplexer stage, a multi-stage analog to digital converter, and a digital output combiner. The multiplexer stage can be configured to sequentially select sensor outputs from one or more sensors, resulting in a stream of selected sensor outputs. The multi-stage analog to digital converter can be coupled with the multiplexer stage, and can be configured to convert the stream of selected sensor outputs into a stream of digitized outputs. The digital output combiner can be configured to re-scale and sum intermediate outputs of the multi-stage analog to digital converter to produce a stream of digitized sensor outputs.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: March 19, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Federico Mazzarella, Massimiliano Musazzi
  • Patent number: 11928507
    Abstract: A hardware-programmable digital signal path component for processing events from sensor mixed signal devices. A system includes a mixed signal component and a reconfigurable signal path component. The mixed signal component includes a group of sensor devices and generates one or more events from among the group of sensor devices. The signal path component receives the event(s), and includes a control unit component and a digital signal processor (DSP) component. The control unit component includes a programmable function enable mechanism, and distributes the received event(s) in combination with one or more functions among a set of predefined functions enabled by the programmable function enable mechanism. The DSP component is configured to perform one or more operations associated with the distributed event(s) in accordance with the enabled function(s).
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: March 12, 2024
    Assignee: InvenSense, Inc.
    Inventors: Matteo Scorrano, Daniele Giorgetti
  • Patent number: 11919769
    Abstract: A method includes fusion bonding a handle wafer to a first side of a device wafer. The method further includes depositing a first mask on a second side of the device wafer, wherein the second side is planar. A plurality of dimple features is formed on an exposed portion on the second side of the device wafer. The first mask is removed from the second side of the device wafer. A second mask is deposited on the second side of the device wafer that corresponds to a standoff. An exposed portion on the second side of the device wafer is etched to form the standoff. The second mask is removed. A rough polysilicon layer is deposited on the second side of the device wafer. A eutectic bond layer is deposited on the standoff. In some embodiments, a micro-electro-mechanical system (MEMS) device pattern is etched into the device wafer.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: March 5, 2024
    Assignee: InvenSense, Inc.
    Inventors: Ashfaque Uddin, Daesung Lee, Alan Cuthbertson
  • Patent number: 11913788
    Abstract: A round robin sensor device for processing sensor data is provided herein. The sensor device includes a multiplexer stage configured to sequentially select sensor outputs from one or more sensors continuously. Continuously and sequentially selecting sensor outputs results in a stream of selected sensor outputs. The sensor device also includes a charge-to-voltage converter operatively coupled to the multiplexer stage and configured to convert a charge from a first sensor of the one or more sensors to a voltage. Further, the sensor device includes a resettable integrator operatively coupled to the charge-to-voltage converter and configured to demodulate and integrate the voltage, resulting in an integrated voltage. Also included in the sensor device is an analog-to-digital converter operatively coupled to the resettable integrator and configured to digitize the integrated voltage to a digital code.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: February 27, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Vadim Tsinker, Frederico Mazzarella, Ali Shirvani
  • Publication number: 20240057972
    Abstract: An ultrasonic transducer device comprises a piezoelectric micromachined ultrasonic transducer (PMUT), a transmitter with first and second differential outputs, and a controller. The PMUT includes a membrane layer. A bottom electrode layer, comprising a first bottom electrode and a second bottom electrode, is disposed above the membrane layer. The piezoelectric layer is disposed above the bottom electrode layer. The top electrode layer is disposed above the piezoelectric layer and comprises a segmented center electrode disposed above a center of the membrane layer and a segmented outer electrode spaced apart from the segmented center electrode. The controller, responsive to the PMUT being placed in a transmit mode, is configured to couple the first and second segments of the bottom electrode layer with ground, couple the first output of the transmitter with the segments of the segmented center electrode, and couple the second output with the segments of the segmented outer electrode.
    Type: Application
    Filed: November 5, 2023
    Publication date: February 22, 2024
    Applicant: InvenSense, Inc.
    Inventors: Fabian T. GOERICKE, Richard J. PRZYBYLA, Benjamin E. EOVINO
  • Patent number: 11905170
    Abstract: A method includes tab dicing a region of a tab region disposed between a first die and a second die. The tab region structurally connects the first die to the second die each including a MEMS device eutecticly bonded to a CMOS device. The tab region includes a handle wafer layer disposed over a fusion bond oxide layer that is disposed on an ACT layer. The tab region is positioned above a CMOS tab region that with the first and second die form a cavity therein. The tab dicing cuts through the handle wafer layer and leaves a portion of the fusion bond oxide layer underneath the handle wafer layer to form an oxide tether within the tab region. The oxide tether maintains the tab region in place and above the CMOS tab region. Subsequent to the tab dicing the first region, the tab region is removed.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: February 20, 2024
    Assignee: InvenSense, Inc.
    Inventors: Daesung Lee, Alan Cuthbertson
  • Patent number: 11888455
    Abstract: Disclosed embodiments provide glitch prediction based on machine learning algorithms in mixed analog and digital systems, particularly directed to digital microelectromechanical (MEMS) multipath acoustic sensors or microphones, which allow seamless, low latency gain changes without audible artifacts or interruptions in the audio output signal.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 30, 2024
    Assignee: INVENSENSE, INC.
    Inventors: Stefano Valle, Alessandro Magnani, Pascal Trotta
  • Patent number: 11881874
    Abstract: A motion sensor with sigma-delta analog-to-digital converter (ADC) having improved bias instability is presented herein. Differential outputs of a differential amplifier of the sigma-delta ADC are electrically coupled, via respective capacitances, to differential inputs of the differential amplifier. To minimize bias instability corresponding to flicker noise that has been injected into the differential inputs, the differential inputs are electrically coupled, via respective pairs of electronic switches, to feedback resistances based on a pair of switch control signals. In this regard, a first feedback resistance of the feedback resistances is electrically coupled to a first defined voltage, and a second feedback resistance of the feedback resistances is electrically coupled to a second defined reference voltage.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: January 23, 2024
    Assignee: INVENSENSE, INC.
    Inventor: Gabriele Pelli
  • Patent number: 11879906
    Abstract: A modified version of a MEMS self-test procedure is presented that can be used to detect the amplitude and frequency of an external vibration from an ambient environment. The method implements processing circuitry that correlates an output sense signal, s(t), with a plurality of periodic signal portions and a plurality of shifted periodic signal portions to generate a plurality of correlation values. A frequency associated with the external vibration is determined based on the plurality of correlation values.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: January 23, 2024
    Assignee: InvenSense, Inc.
    Inventor: Aurelio Pellegrini
  • Patent number: 11867509
    Abstract: A MEMS gyroscope includes a driven mass that moves in response to a drive force. A drive amplitude sense electrode is included as a feature of the drive mass and extends in a direction perpendicular to the drive direction. A change in capacitance is measured based on the relative location of the drive amplitude sense electrode to a known fixed position, which in turn is used to accurately determine a location of the driven mass.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: January 9, 2024
    Assignee: InvenSense, Inc.
    Inventors: Damiano Milani, Luca Coronato
  • Publication number: 20240004061
    Abstract: A device comprises a processor communicatively coupled with an ultrasonic sensor which is configured to repeatedly emit ultrasonic pulses during transmit periods which are interspersed with receive periods. Returned ultrasonic signals corresponding to the emitted ultrasonic pulses are received by the ultrasonic sensor during the receive periods. The processor is configured to direct the ultrasonic sensor to listen, during a listening window, for a potentially interfering ultrasonic signal from a second ultrasonic sensor. The listening window is prior to a transmit period of the transmit periods. In response to detecting the potentially interfering ultrasonic signal during the listening window, the processor is configured to adjust operation of the ultrasonic sensor to avoid an ultrasonic collision with the second ultrasonic sensor to facilitate coexistence of the ultrasonic sensor and the second ultrasonic sensor in an operating environment shared by the ultrasonic sensor and the second ultrasonic sensor.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 4, 2024
    Applicant: InvenSense, Inc.
    Inventors: Joe Youssef, Mitchell Kline, Richard J. Przybyla
  • Publication number: 20230417907
    Abstract: A device comprises a processor coupled with an ultrasonic transducer which is configured to repeatedly emit ultrasonic pulses during transmit periods which are interspersed with listening windows. Each sequential pair of the transmit periods is separated by a single listening window of the listening windows. During a fixed portion of a listening window of the listening windows the ultrasonic transducer is configured to receive returned signals corresponding to an emitted ultrasonic pulse of the ultrasonic pulses which was transmitted during a transmit period of the transmit periods that immediately preceded the listening window. The processor randomizes an overall length of each listening window of the listening windows. The processor directs filtering of returned signals received during a plurality of the randomized listening windows to achieve filtered returned signals. The processor detects, using the filtered returned signals, a moving object in a field of view of the ultrasonic transducer.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 28, 2023
    Applicant: InvenSense, Inc.
    Inventors: Daniela Hall, Mitchell Kline, Joe Youssef
  • Patent number: 11847851
    Abstract: Microelectromechanical (MEMS) devices and associated methods are disclosed. Piezoelectric MEMS transducers (PMUTs) suitable for integration with complementary metal oxide semiconductor (CMOS) integrated circuit (IC), as well as PMUT arrays having high fill factor for fingerprint sensing, are described.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Julius Ming-Lin Tsai, Mike Daneman, Sanjiv Kapoor
  • Patent number: 11846648
    Abstract: A microelectromechanical system device is described. The microelectromechanical system device can comprise: a proof mass coupled to an anchor via a spring, wherein the proof mass moves in response to an imposition of an external load to the proof mass, and an overtravel stop comprising a first portion and a second portion.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Robert Walmsley
  • Patent number: 11841228
    Abstract: The subject disclosure provides exemplary 3-axis (e.g., GX, GY, and GZ) linear and angular momentum balanced vibratory rate gyroscope architectures with fully-coupled sense modes. Embodiments can employ balanced drive and/or balanced sense components to reduce induced vibrations and/or part to part coupling. Embodiments can comprise two inner frame gyroscopes for GY sense mode and an outer frame or saddle gyroscope for GX sense mode and drive system coupling, drive shuttles coupled to the two inner frame gyroscopes or outer frame gyroscope, and four GZ proof masses coupled to the inner frame gyroscopes for GZ sense mode. Components can be removed from an exemplary overall architecture to fabricate a single axis or two axis gyroscope and/or can be configured such that a number of proof-masses can be reduced in half from an exemplary overall architecture to fabricate a half-gyroscope. Other embodiments can employ a stress isolation frame to reduce package induced stress.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: December 12, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joe Seeger
  • Patent number: 11844282
    Abstract: A piezoelectric micromachined ultrasonic transducer (PMUT) device includes a substrate having an opening therethrough and a membrane attached to the substrate over the opening. An actuating structure layer on a surface of the membrane includes a piezoelectric layer sandwiched between the membrane and an upper electrode layer. The actuating structure layer is patterned to selectively remove portions of the actuating structure from portions of the membrane to form a central portion proximate a center of the open cavity and three or more rib portions projecting radially outward from the central portion.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: December 12, 2023
    Assignee: InvenSense, Inc.
    Inventors: Andre Guedes, Fabian Goericke, Stefon Shelton, Benedict Costello, David Horsley