Patents Assigned to IP Co., LLC
  • Patent number: 11568570
    Abstract: System and methods for matching color and appearance of a target coating are provided herein. The system includes an electronic imaging device configured to receive a target image data of the target coating. The target image data includes target coating features. The system further includes one or more feature extraction algorithms that extracts the target image features from the target image data. The system further includes a machine-learning model that identifies a calculated match sample image from a plurality of sample images utilizing the target image features. The machine-learning model includes pre-specified matching criteria representing the plurality of sample images for identifying the calculated match sample image from the plurality of sample images. The calculated match sample image is utilized for matching color and appearance of the target coating.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: January 31, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Larry E. Steenhoek, Alessio Tamburro
  • Patent number: 11566146
    Abstract: A coating composition for application to a substrate utilizing a high transfer efficiency applicator is provided herein. The coating composition includes monomeric, oligomeric, or polymeric compounds having a number average molecular weight of from about 400 to about 20,000 and having a free-radically polymerizable double bond. The coating composition further includes a photo initiator. The coating composition has an Ohnesorge number (Oh) of from about 0.01 to about 12.6. The coating composition has a Reynolds number (Re) of from about 0.02 to about 6,200. The coating composition has a Deborah number (De) of from greater than 0 to about 1730.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 31, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Shih-Wa Wang, Matthew Irwin, Matthew Boland, Joanne Hardy, Daniel Naugle, Kevin O'Connor, Barry Snyder
  • Publication number: 20220404202
    Abstract: Methods and systems for determining a radar compatible coating are provided. In one example, the method includes obtaining a reflectance measurement of a target coating to characterize a color of the target coating. One or more candidate formulas are generated to determine color matching to the color of the target coating. A corresponding color and a corresponding radar property for each of the one or more candidate formulations is predicted. A radar compatible coating composition that is the same or substantially similar in appearance to the target coating is generated. Generating the radar compatible coating composition is based at least in part on the corresponding color and the corresponding radar property for one of the one or more candidate formulations.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 22, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Dominic V. POERIO, Neil R. MURPHY
  • Publication number: 20220389602
    Abstract: A cathodic electrocoating composition having reduced volatile organic compounds includes: an epoxy resin comprising; a film forming binder, and a cross-linking agent; a pigment paste; water; and about 0.01 to about 10 percent by weight of an oxo-alcohol, based on a total weight of the composition, wherein the resin composition is free of glycol ethers.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 8, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Konstantinos Markou, Tim Kösterke, Thomas Huesmann
  • Publication number: 20220389231
    Abstract: Methods and coating compositions for application to a substrate utilizing a high transfer efficiency applicator are provided. An exemplary method includes providing the coating composition to the high transfer efficiency applicator; applying the coating composition onto the substrate utilizing a high transfer efficiency applicator to form an applied layer, wherein a loss of volatiles after application through the high transfer efficiency applicator is less than about 1 weight percent based on a total weight of the coating composition; performing a partial polymerization via radiation of the applied layer; and after performing the partial polymerization of the applied layer, thermally curing and drying the applied layer. An exemplary coating composition has a pre-application viscosity, at a shear rate of 1000 s?1, of less than about 100 centipoise (cP), and a post-radiation-exposure viscosity at a shear rate of 0.1 s?1 of from about 500 cP to about 150,000 cP.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 8, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: SHIH-WA WANG, MEI WEN, MICHAEL WOLFE
  • Publication number: 20220380610
    Abstract: Aqueous cathodic electrocoating compositions, methods for preparing aqueous cathodic electrocoating compositions, and methods for electrodepositing coatings from aqueous cathodic electrocoating compositions are provided. An aqueous cathodic electrocoating composition having a binder resin and a crosslinking agent is provided. In the aqueous cathodic electrocoating composition, a bismuth-sugar solution is used to provide a catalytic amount of a bismuth compound dispersed in the electrocoating composition.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 1, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Konstantinos MARKOU, Nevzat ÖZTÜRK, Thomas HUESMANN
  • Publication number: 20220380514
    Abstract: A composition for application to a substrate is provided. The composition comprises a base component and an activator component. The base component comprises hydroxyl functional prepolymers and the activator comprises isocyanate prepolymers. The composition further comprises an amount of carbon fibre. The hydroxyl functional prepolymers are formulated to polymerise with the isocyanate prepolymers to form a polymer containing carbon fibre.
    Type: Application
    Filed: August 11, 2022
    Publication date: December 1, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Peter Guest, Geoff Quinton
  • Publication number: 20220356359
    Abstract: A method includes applying a coating composition to a substrate through a high transfer efficiency applicator wherein the coating composition has a pH of greater than about 7 and comprises: A. a resin dispersion comprising a latex, a polyurethane, or combinations thereof; B. an optional cross-linker; C. an optional pigment; D. water; E. a water-soluble solvent; and F. at least one rheology control agent chosen from an alkali swellable emulsion, a layered silicate, and combinations thereof; wherein the coating composition has a viscosity of about 20 to about 100 cps as determined using ASTM 7867-13 with cone-and-plate or parallel plates at a shear rate of 1000 sec-1, and wherein the coating composition has a wet film thickness of at least 20 microns measured at about 45 degrees without visible sag.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 10, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Shih-Wa Wang, Michael S. Wolfe, John R. Moore, Petra Stoffel
  • Patent number: 11492440
    Abstract: Clearcoat compositions and methods for forming a clearcoat compositions are provided. In one example, a clearcoat composition includes a binder portion A that includes a polyaspartic ester resin. An activator portion B includes a polyol-modified isocyanate that is a reaction product of a polyisocyanate component and a polyol component. The polyol component includes polycaprolactone polyol.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 8, 2022
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Mei Wen, Iain Harvey
  • Publication number: 20220348787
    Abstract: A system for applying a coating composition is provided herein. The system includes a first high transfer efficiency applicator defining a first nozzle orifice and a second high transfer efficiency applicator defining a second nozzle orifice. The system further includes a reservoir. The system further includes a substrate defining a first target area and a second target area. The first high transfer efficiency applicator and the second high transfer efficiency applicator are configured to receive the coating composition from the reservoir and configured to expel the coating composition through the first nozzle orifice to the first target area of the substrate and to expel the coating composition through the second nozzle orifice to the second target area of the substrate.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Michael S. Wolfe
  • Publication number: 20220332134
    Abstract: A method includes applying a coating composition to a substrate through a high transfer efficiency applicator to form the coating layer on the substrate wherein a loss of volatiles is less than about 0.5 weight, and wherein the coating composition comprises: A. a resin comprising an acrylic, a polyester, or combinations thereof; B. a melamine cross-linker; C. an optional pigment; D. an organic solvent; and E. at least one polyurea crystal sag control agent that is the reaction product of an amine and an isocyanate, that has a melting point of from about 50° C. to about 150° C., and that is present in an amount of from about 0.1 to about 4 weight percent based on a total weight of the coating composition; and wherein the coating composition has a wet film thickness of at least about 30 microns measured at about 45 degrees without visible sag.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 20, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Michael S. Wolfe, Cameron Stevens, James Neal, Petra Stoffel, Matthias Baltrusch
  • Patent number: 11453802
    Abstract: A system for applying a coating composition is provided herein. The system includes a first high transfer efficiency applicator defining a first nozzle orifice and a second high transfer efficiency applicator defining a second nozzle orifice. The system further includes a reservoir. The system further includes a substrate defining a first target area and a second target area. The first high transfer efficiency applicator and the second high transfer efficiency applicator are configured to receive the coating composition from the reservoir and configured to expel the coating composition through the first nozzle orifice to the first target area of the substrate and to expel the coating composition through the second nozzle orifice to the second target area of the substrate.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 27, 2022
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Michael S. Wolfe
  • Patent number: 11401438
    Abstract: A system for applying a coating composition is provided herein. The system includes a first high transfer efficiency applicator defining a first nozzle orifice and a second high transfer efficiency applicator defining a second nozzle orifice. The system further includes a reservoir. The system further includes a substrate defining a first target area and a second target area. The first high transfer efficiency applicator and the second high transfer efficiency applicator are configured to receive the coating composition from the reservoir and configured to expel the coating composition through the first nozzle orifice to the first target area of the substrate and to expel the coating composition through the second nozzle orifice to the second target area of the substrate.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: August 2, 2022
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: John R. Moore, Michael R. Koerner, Christian Jackson, Bradley A. Jacobs, Michael S. Wolfe
  • Patent number: 11397111
    Abstract: Systems and methods for determining illumination angle and viewing angle in color observation are described. The system includes an optical capturing device to acquire an image of its surroundings and a processing unit. When operated, the processing unit executes the following steps: identify a position of a light source in the image acquired by the optical capturing device; identify a position of a viewer in the image acquired by the optical capturing device; determine a first angular position of the light source with respect to the optical capturing device and a second angular position of the viewer with respect to the optical capturing device and provide the first angular position and the second angular position to define an actual viewing geometry.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: July 26, 2022
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Larry E. Steenhoek, Robert V. Canning, Jr.
  • Publication number: 20220187198
    Abstract: Devices and methods for measuring color of a target coating are provided. In an exemplary embodiment, a color measurement device includes a housing configured for placement on a target coating. A source connected to the housing directs a beam of electromagnetic radiation towards the target coating at an entrance angle. A spherical coordinate system is used, where the entrance angle is a polar angle measured from a zenith that is normal to the target coating surface. First and second detectors are connected to the housing at a first and second polar angle, respectively, to measure the electromagnetic radiation reflected by a target population of flakes within the target coating, where all the flakes in the target population of flakes have the same angled flake normal polar angle. The first polar angle is different than the second polar angle.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 16, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Larry E. Steenhoek
  • Publication number: 20220161586
    Abstract: A method is described for applying a coating composition to a surface of a substrate in a pattern utilizing a non-contact deposition applicator to increase edge acuity and resolution of the coating composition in the pattern. The method includes the steps of providing the substrate having the surface that comprises a non-porous polymer, applying a surface treatment to the surface in a pattern to form a patterned surface that has increased surface energy as compared to the non-surface treated surface, providing the coating composition including a carrier and a binder, providing the non-contact deposition applicator including a nozzle, and applying the coating composition to the patterned surface through the nozzle to selectively wet the patterned surface and form a coating layer disposed in the pattern and having increased edge acuity and resolution, wherein the coating layer has a wet thickness of at least about 15 micrometers as applied.
    Type: Application
    Filed: March 5, 2020
    Publication date: May 26, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Michael R. Koerner
  • Publication number: 20220163462
    Abstract: Low-cost devices and methods for measuring radar transmission and/or reflectance of coated articles, as well as methods for forming coatings on articles are provided. An exemplary low-cost radar transmission and reflection measurement device includes a radar transmitter that emits a radar signal, a radar target to which the radar signal is directed, and a radar receiver that receives the radar signal. Further, the exemplary low-cost device includes a sample holder located between the radar transmitter and the radar target and between the radar target and the radar receiver. The sample holder receives a sample including a coating. The low-cost device also includes a controller connected to the radar transmitter and radar receiver. The controller measures a radar signal loss due to the coating.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Neil Richard Murphy
  • Publication number: 20220162455
    Abstract: A process includes combining a copolymer and mono- or di-valent metal ions to form a mixture, wherein the copolymer has from about 70 to about 98 wt % of an alpha-olefin moiety and about 2 to about 30 wt % of a (meth)acrylate moiety; reactively extruding the mixture to form a neutralized copolymer having a melt flow index of from about 5 to about 1500 g/10 min, wherein about 2 to about 50 wt % of the (meth)acrylate moiety is neutralized to form a mono- or di-valent metal salt present in an amount of from about 0.2 to about 20% based on the total (meth)acrylic acid content of the copolymer; and grinding the neutralized copolymer to form the powder having a Dv50 particle size of from about 10 to about 600 ?m as determined using ASTM D5861, wherein the process is free of utilizing a liquid and/or a slurry.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Safraz Kahn
  • Publication number: 20220155430
    Abstract: Methods and devices for estimating a component transmission loss are provided. In an exemplary embodiment, a method includes receiving a desired substrate criterion of a desired substrate, and receiving a desired coating criterion of a desired coating. A component includes the desired substrate and the desired coating. A coating criterion value is received, where the coating criterion value quantifies the desired coating criterion. A desired coating permittivity is estimated for the desired coating, using the coating criterion value, and an estimated component transmission loss of radar signal through the component is produced.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 19, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Neil Richard Murphy
  • Publication number: 20220064476
    Abstract: Waterborne top coat compositions, processes for preparing such compositions, and methods for forming top coats on substrates are provided. In an embodiment, a waterborne top coat composition includes water, pigment(s) and resin solids. The resin solids comprise about 60 to 100 wt. % of binder solids and 0 to about 40 wt. % of crosslinker solids, the binder solids comprising about 1 to about 40 wt. % of a urethanized polyester/(meth)acryl copolymer hybrid binder having a hydroxyl number of about 30 to about 200 mg KOH/g and a carboxyl number of about 8 to about 50 mg KOH/g, and about 60 to about 99 wt. % of one or more additional binders, the sum of the respective wt. % in each case equaling 100 wt. %.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 3, 2022
    Applicant: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Carmen Flosbach, Stephen Istivan, Zoha al-Badri, Meagan Douple Goff, Katharina Dreger