Patents Assigned to IROBOT
  • Patent number: 10159180
    Abstract: A method of mowing multiple areas includes training a robotic mower to mow at least two areas separated by a space, including moving the robotic mower about the areas while storing data indicative of location of boundaries of each area relative to boundary markers, training the robotic mower to move across the space separating the areas, and initiating a mowing operation. Training the robotic mower to move across the space separating the areas includes moving the robotic mower to a traversal launch point of a first of the areas and moving the robotic mower to a traversal landing point of a second of the areas. The mowing operation causes the robotic mower to move to the traversal launch point, move from the traversal launch point across the space to the traversal landing point, and then mow the second of the areas.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 25, 2018
    Assignee: iRobot Corporation
    Inventors: Paul C. Balutis, Andrew Beaulieu, Brian Yamauchi
  • Patent number: 10154768
    Abstract: A mobile robot includes a body configured to traverse a surface and to receive debris from the surface, and a debris bin within the body. The debris bin includes a chamber to hold the debris received by the mobile robot, an exhaust port through which the debris exits the debris bin; and a door unit over the exhaust port. The door unit includes a flap configured to move, in response to air pressure at the exhaust port, between a closed position to cover the exhaust port and an open position to open a path between the chamber and the exhaust port. The door unit, including the flap in the open position and in the closed position, is within an exterior surface of the mobile robot.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: December 18, 2018
    Assignee: iRobot Corporation
    Inventors: Russell Walter Morin, Harold Boeschenstein, David Orrin Swett, Jude Royston Jonas
  • Patent number: 10152062
    Abstract: A method of navigating an autonomous coverage robot on a floor includes controlling movement of the robot across the floor in a cleaning mode, receiving a sensor signal indicative of an obstacle, rotating the robot away from the sensed obstacle, determining a change in the received sensor signal during at least a portion of the rotation of the robot away from the sensed obstacle, and identifying the sensed obstacle based at least in part on the determined change in the received sensor signal.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: December 11, 2018
    Assignee: iRobot Corporation
    Inventor: Mark Steven Schnittman
  • Patent number: 10124490
    Abstract: An autonomous mobile robot includes a robot body, a drive system, a sensor system, and a controller. The drive system supports the robot body and maneuvers the robot over a floor surface. The sensor system includes an inertial measurement unit for measuring a pose of the robot and issues a sensor signal including data having information regarding a pose of the robot. The controller communicates with the drive and sensor systems and executes a behavior system. The behavior system receives the sensor signal from the sensor system and executes a behavior. The behavior system executes an anti-stasis behavior in response to sensor signals indicating that the robot is constrained to evaluate a state of constraint. In addition, the behavior system executes an anti-tilt behavior in response to sensor signals indicating that the robot is tilted with respect to a direction of gravity to evaluate a state of tilt.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: November 13, 2018
    Assignee: iRobot Corporation
    Inventors: Mark Schnittman, Thomas W. Bushman
  • Patent number: 10100968
    Abstract: A protractible and retractable mast system for an autonomous mobile robot includes an elongate flexible member including a first lateral end and a second lateral end, and a fastener having a first portion extending along a length of the first lateral end and a second portion extending along a length of the second lateral end. The flexible member is configured to be at least partially coiled within a body of the robot, and a portion of the flexible member is vertically movable away from the body when the flexible member is being uncoiled. The fastener is configured to connect the first lateral end to the second lateral end when the flexible member is being uncoiled, and disconnect the first lateral end from the second lateral end when the flexible member is being coiled.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: October 16, 2018
    Assignee: iRobot Corporation
    Inventors: Patrick Chow, Nikolai Romanov
  • Patent number: 10102429
    Abstract: The present teachings provide an autonomous mobile robot that includes a drive configured to maneuver the robot over a ground surface within an operating environment; a camera mounted on the robot having a field of view including the floor adjacent the mobile robot in the drive direction of the mobile robot; a frame buffer that stores image frames obtained by the camera while the mobile robot is driving; and a memory device configured to store a learned data set of a plurality of descriptors corresponding to pixel patches in image frames corresponding to portions of the operating environment and determined by mobile robot sensor events.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: October 16, 2018
    Assignee: iRobot Corporation
    Inventor: Mark S. Schnittman
  • Patent number: 10091930
    Abstract: A robot lawnmower includes a robot body, a drive system, a localizing system, a teach monitor, and a controller in communication with one another. The drive system is configured to maneuver the robot lawnmower over a lawn. The teach monitor determines whether the robot lawnmower is in a teachable state. The controller includes a data processing device and non-transitory memory in communication with the data processing device. The data processing device executes a teach routine when the controller is in a teach mode for tracing a confinement perimeter around the lawn as a human operator pilots the robot lawn mower, when the robot lawnmower is in the teachable state, the teach routine stores global positions determined by the localizing system in the non-transitory memory, and when the robot lawnmower is in the unteachable state, the teach routine issues an indication of the unteachable state.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: October 9, 2018
    Assignee: iRobot Corporation
    Inventors: Paul C. Balutis, Alec Likhite, Brian Doughty, Jeff Karlson, Tyler Nikitas
  • Patent number: 10088845
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 2, 2018
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Patent number: 10070763
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 11, 2018
    Assignee: iRobot Corporation
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin
  • Patent number: 10070764
    Abstract: An autonomous coverage robot includes a chassis having forward and rearward portions and a drive system carried by the chassis. The forward portion of the chassis defines a substantially rectangular shape. The robot includes a cleaning assembly mounted on the forward portion of the chassis and a bin disposed adjacent the cleaning assembly and configured to receive debris agitated by the cleaning assembly. A bin cover is pivotally attached to a lower portion of the chassis and configured to rotate between a first, closed position providing closure of an opening defined by the bin and a second, open position providing access to the bin opening. The robot includes a body attached to the chassis and a handle disposed on an upper portion of the body. A bin cover release is actuatable from substantially near the handle.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: September 11, 2018
    Assignee: iRobot Corporation
    Inventors: Mark Steven Schnittman, Zivthan A. Dubrovsky, Jeffrey W. Mammen, Aaron Solochek
  • Patent number: 10064533
    Abstract: An autonomous floor cleaning robot includes a body, a controller supported by the body, a drive supporting the body to maneuver the robot across a floor surface in response to commands from the controller, and a pad holder attached to an underside of the body to hold a removable cleaning pad during operation of the robot. The pad includes a mounting plate and a mounting surface. The mounting plate is attached to the mounting surface. The robot includes a pad sensor to sense a feature on the pad and to generate a signal based on the feature, which is defined in part by a cutout on the card backing. The mounting plate enables the pad sensor to detect the feature. The controller is responsive to the signal to perform operations including selecting a cleaning mode based on the signal, and controlling the robot according to a selected cleaning mode.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 4, 2018
    Assignee: iRobot Corporation
    Inventors: Ping-Hong Lu, Joseph M. Johnson, Daniel Foran, Marcus Williams, Andrew Graziani
  • Patent number: 10067232
    Abstract: A location estimation system for use with an autonomous lawn mowing robot, comprises a plurality of synthetic surfaces positioned with respect to a mowable space in an environment, a radiation source coupled to the lawn mowing robot, a detector coupled to the lawn mowing robot and configured to detect radiation reflected by objects in the environment, and a controller configured to controllably direct radiation from the radiation source to scan the environment, and to vary at least one of an output power of the directed radiation and a scan rate of the directed radiation, as a function of detected radiation reflected from one or more of the synthetic surfaces.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: September 4, 2018
    Assignee: iRobot Corporation
    Inventors: Mike Halloran, Jamie Milliken, Travis Pierce, Eric Charles Peters
  • Patent number: 10059388
    Abstract: A wheel assembly for a remote vehicle comprises a wheel structure comprising a plurality of spokes interconnecting a rim and a hub. The spokes comprise at least one slit extending therethrough radially inward from the rim to the hub. The assembly also comprises a flipper structure comprising an arm, a plurality of legs, and an attachment base. The plurality of legs and the attachment base comprise a four-bar linkage. The assembly further comprises an insert comprising a bore with a flat surface that tapers outward from a top portion to a bottom portion of the insert. The insert being configured to couple the flipper structure to the wheel structure via an axle on the remote vehicle and prevent backlash between the axle and the flipper structure. The flipper structure being configured to transmit axial forces to the wheel structure. The wheel structure being configured to absorb radial and axial forces.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: August 28, 2018
    Assignee: IROBOT DEFENSE HOLDINGS, INC.
    Inventors: Pavlo E. Rudakevych, Garran M. Gossage, Christopher L. Morey, Todd M. Meaney, Timothy R. Ohm
  • Patent number: 10061896
    Abstract: The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: August 28, 2018
    Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATION
    Inventors: Charles S. Jordan, Andy Young, Mei Sheng Ng, Yair Lurie, Fuji Lai, Timothy C. Wright, Cody Herzog, Blair Whitney, Bill Rizzi, James Ballantyne, Yulun Wang, Cheuk Wah Wong, Justin H. Kearns, Orjeta Taka, Ramchandra Karandikar
  • Patent number: 10045676
    Abstract: A method of scheduling a robotic device enables the device to run autonomously based on previously loaded scheduling information. The method consists of a communication device, such as a hand-held remote device, that can directly control the robotic device, or load scheduling information into the robotic device such that it will carry out a defined task at the desired time without the need for further external control. The communication device can also be configured to load a scheduling application program into an existing robotic device, such that the robotic device can receive and implement scheduling information from a user.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: August 14, 2018
    Assignee: iRobot Corporation
    Inventors: Zivthan A. Dubrovsky, Gregg W. Landry, Michael J. Halloran, James Lynch
  • Patent number: 10037038
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: July 31, 2018
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Jr., Tony L. Campbell, John Bergman
  • Patent number: 10034421
    Abstract: A method of mowing with an autonomous robot lawnmower includes traversing a mowable area with the autonomous robot lawnmower carrying a cutter and a vegetation characteristic sensor. The vegetation characteristic sensor is configured to generate sensor data in response to detecting a vegetation characteristic of the mowable area. The vegetation characteristic is selected from the group consisting of a moisture content, a grass height, and a color. The method includes storing position-referenced data representing the vegetation characteristic detected across the mowable area. The position-referenced data is based at least in part on the sensor data and position data. The method includes sending data to a remote device to cause the remote device to display a map including information based on the position-referenced data.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: July 31, 2018
    Assignee: iRobot Corporation
    Inventors: Brian Doughty, Andrew Beaulieu, Brian Yamauchi, Alec Likhite, Erik Steltz
  • Patent number: 10035270
    Abstract: A robot includes a body and a bumper. The body is movable relative to a surface and includes a first portion of a sensor. The bumper is mounted on the body and movable relative to the body and includes a backing and a second portion of the sensor. The backing is movable relative to the body in response to a force applied to the bumper. The second portion of the sensor is attached to the backing and movable with the backing relative to the first portion of the sensor in response to a force applied to the bumper. The sensor is configured to output an electrical signal in response to a movement of the backing. The electrical signal is proportional to an amount of displacement of the second portion relative to the first portion.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: July 31, 2018
    Assignee: iRobot Corporation
    Inventors: Victor Fay, Seth Blitzblau, Samuel Duffley, Kyle Dumont, Justin H. Woodman
  • Patent number: D826389
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: August 21, 2018
    Assignee: iRobot Corporation
    Inventor: Russell Walter Morin
  • Patent number: D833096
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: November 6, 2018
    Assignee: iRobot Corporation
    Inventors: Garrett Breheny, Timothy Angle, Matthew Sigel Evans