Abstract: A pavement condition analysis system and method models a state of a roadway by processing at least traffic and weather data to simulate the impact of traffic and weather conditions on a particular section of a transportation infrastructure. Traffic data is ingested from a plurality of different external sources to incorporate various approaches estimating traffic characteristics such as speed, flow, and incidents, into a road condition model to analyze traffic conditions on the roadway in order to improve road condition assessments and/or prediction.
Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
Abstract: A vehicular observation and detection apparatus and system incorporates a detection framework using video analysis to differentiate between motorized vehicles and bicycles for improved traffic flow and safety at intersections. The detection framework creates virtual zones overlaid on lanes of a roadway and analyzes input data representing objects in the virtual zones collected from one or more cameras positioned at or near the roadway.
Type:
Grant
Filed:
March 13, 2013
Date of Patent:
January 13, 2015
Assignee:
Iteris, Inc.
Inventors:
Yan Gao, Robert J. Hwang, Wing Lam, Todd W. Kreter, Michael T. Whiting, Matthew Linton
Abstract: A vehicular observation and detection apparatus and system incorporates a detection framework using video analysis to differentiate between motorized vehicles and bicycles for improved traffic flow and safety at intersections. The detection framework creates virtual zones overlaid on lanes of a roadway and analyzes input data representing objects in the virtual zones collected from one or more cameras positioned at or near the roadway.
Type:
Application
Filed:
March 13, 2013
Publication date:
September 18, 2014
Applicant:
ITERIS, INC.
Inventors:
YAN GAO, ROBERT J. HWANG, WING LAM, TODD W. KRETER, MICHAEL T. WHITING, MATTHEW LINTON
Abstract: A pavement condition analysis system and method models a state of a roadway by processing at least traffic and weather data to simulate the impact of traffic and weather conditions on a particular section of a transportation infrastructure. Traffic data is ingested from a plurality of different external sources to incorporate various approaches estimating traffic characteristics such as speed, flow, and incidents, into a road condition model to analyze traffic conditions on the roadway in order to improve road condition assessments and/or prediction.
Abstract: A vehicular observation and detection apparatus and system includes a radar sensor, a camera, and circuitry for packaging radar data and a video signal together, inside a housing. Additional processors determine information contained within the radar data and video signal and perform data processing operations on the information to conduct traffic management and control.
Abstract: An apparatus and system for evaluating winter transportation infrastructure maintenance operations includes a quantification component and a simulation component. Input data representative of collected winter transportation infrastructure maintenance data and observed transportation infrastructure data are modeled in a comprehensive data processing mechanism to measure and carry out effective and efficient winter maintenance planning and operations.
Abstract: An apparatus and system for evaluating winter transportation infrastructure maintenance operations includes a quantification component and a simulation component. Input data representative of collected winter transportation infrastructure maintenance data and observed transportation infrastructure data are modeled in a comprehensive data processing mechanism to measure and carry out effective and efficient winter maintenance planning and operations.
Abstract: An apparatus and system for evaluating winter transportation infrastructure maintenance operations includes a quantification component and a simulation component. Input data representative of collected winter transportation infrastructure maintenance data and observed transportation infrastructure data are modeled in a comprehensive data processing mechanism to measure and carry out effective and efficient winter maintenance planning and operations.
Abstract: Provided herein is a lens mount system and related process that allow for performing six-axis active alignment with a single joining step. This system and/or process simplifies the lens attachment in a manner that makes such attachment compatible with high volume manufacturing and/or full automation.
Type:
Application
Filed:
June 3, 2010
Publication date:
December 8, 2011
Applicant:
ITERIS, INC.
Inventors:
JEFFREY SHIE PING TSENG, HANS MOLIN, TODD WILLIAM KRETER, ROBERT GEORGE CHARNOCK, BRADLEY STEVEN STEARNS
Abstract: A method of calibrating a video image to the scene imaged is provided for which a vehicle image transit can be associated with the transit of the real-world vehicle. A path is determined by a tracking point for at least one vehicle image. A measuring vehicle image is selected, wherein the measuring vehicle image is associated with a known dimension of the real-world measuring vehicle. At a point on the path, collocated with the tracking point, a scaling factor is determined such that a measuring vehicle image dimension is associated with a real-world dimension. A number of scaling factors can then be assembled into a scaling map allowing vehicles traversing the video scene to be measured in time, by the video frame rate, and distance, by the distance of their images and scaled according to the scaling map. Other embodiments are also disclosed.
Abstract: A lane tracking system for a vehicle employing redundant imaging devices with different fields of view is disclosed. The imaging devices are oriented in generally opposite directions so glare or other harsh lighting hampering one imaging device will not affect the other device. The appropriate image is selected based on image quality and used to detect lane markers and vehicle position. A preferred application for lane departure warning is also disclosed.
Abstract: An imaging system with brightness control includes an image capture subsystem and an image control block and is adapted for use in conjunction with an image processing application. The image capture subsystem receives an image and converts this image into digital image data. The digital signal is then stored in a video buffer for access by the image control block. The image control block provides brightness control of an image sensor in the image control subsystem to optimize the brightness of the desired area of interest in the image relative to the background. In one application, the imaging system is used in conjunction with a lane tracking system image processing application to detect roadway lane markings from a moving vehicle.
Abstract: An apparatus and a method for detecting moisture, such as rain on a vehicle, wherein a sensor acquires an optical image from a region of interest and produces the data to a microprocessor, the microprocessor processes the acquired optical image and selects an algorithm to evaluate the acquired optical image in order to determine whether sufficient moisture exists on the vehicle to warrant action such as activating windshield wipers.
Abstract: Improved imaging system includes a CMOS imaging chip with a light blocking layer configured so as to block incident light from a portion of the readout circuitry sensitive to light. The light blocking layer may be positioned on top of a glass package housing the imaging chip or may be incorporated in the manufacture of the chip itself. Distortions in image data due to lighting conditions in outdoor applications are avoided by the presence of the light blocking layer resulting in improved image quality under such conditions.
Abstract: An optical assembly for mounting in a vehicle employs a two piece assembly including a bracket having a front surface and a back surface and an optical device having a front surface and a lens element on the front surface. The back surface of the bracket is connected to the vehicle and the front surface of the optical device is removably attached to the back surface of the bracket. The lens element focuses an image through a windshield of the vehicle. In one embodiment of the present invention, the optical device further comprises at least one notch member and a support extension member and the bracket includes an opening and further comprises at least one groove member. The at least one notch member is positioned to removably attach to the at least one groove member, and the support extension member is positioned to removably attach to the opening. In one embodiment, the assembly is mounted to the vehicle windshield so that a driver of said vehicle has an unobstructed view of a road.