Patents Assigned to Iwatt
  • Publication number: 20130241430
    Abstract: The embodiments disclosed herein describe the dynamic control of a switching power converter between different operation modes of the switching power converter. In one embodiment, the operation modes of the switching power converter include a switching mode and a linear mode. The switching power converter may be included in a LED lamp system according to one embodiment.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: IWATT, INC.
    Inventors: Andrew Kwok-Cheung Lee, Chuanyang Wang, Jiang Chen, Liang Yan
  • Publication number: 20130242625
    Abstract: A power converter that controls a collector current of a bipolar junction transistor (BJT) by controlling the base current to the BJT after having determined the gain of the BJT. A gain detection block determines a gain of the BJT during a first mode. A current calculation block generates a current setting for the base current based on the gain of the BJT determined by the gain detection block during a second mode distinct from the first mode. In some embodiments, the power converter may be included in a LED lamp system.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: IWATT INC.
    Inventors: Liang Yan, Clarita C. Poon, Hien Huu Bui, Chuanyang Wang, Andrew Kwok-Cheung Lee, John William Kesterson
  • Publication number: 20130242629
    Abstract: An improved discontinuous current mode (DCM) switching power converter that compensates for the effect of dead time. The dead time of the switching power converter is measured during a switching cycle and a baseline on-time for a switch of the switching power converter is determined. The dead time and baseline on-time are used in calculating the desired on-time of the switch during a subsequent switching cycle of the power converter. The desired switch on-time regulates the output voltage to a desired voltage level. The desired switch on-time also maintains the average input current to the power converter in proportion to the input voltage, thereby improving the power factor of the switching power.
    Type: Application
    Filed: February 5, 2013
    Publication date: September 19, 2013
    Applicant: IWATT INC.
    Inventors: John William Kesterson, Liang Yan
  • Publication number: 20130235621
    Abstract: A switching power converter includes a controller configured to transition from a first operating mode to a second operating mode by determining the operating conditions at the transition point between the operation modes. The controller uses a point where a switch included in the power converter would have been turned on if operating under the first operating mode as a reference point to determine when to turn on the switch under the second operating mode. Using the reference point, the switching power converter determines a control period for regulating the switching period of the switch in a second operating mode.
    Type: Application
    Filed: February 20, 2013
    Publication date: September 12, 2013
    Applicant: IWATT INC.
    Inventors: Liang Yan, John William Kesterson, Xiaoyan Wang
  • Publication number: 20130169172
    Abstract: A system controls a switching power converter to power LED strings using a predictive feedforward control mechanism. An LED controller determines programmed current levels and duty cycles for driving LED strings. The LED controller determines a predicted load for a subsequent cycle of a switching power converter driving the LED strings based on the programmed current levels and duty cycles. A power conversion controller uses the predicted load information to control switching of the switching power converter. This improves the dynamic response of the switching converter to changing load conditions, thereby improving overall power efficiency and performance of the system.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: IWATT INC,
    Inventors: John William Kesterson, Xiaoyan Wang, Xuecheng Jin, Enzhu Liang, Selcuk Sen
  • Publication number: 20130147374
    Abstract: An LED driver controls current through an LED string. The LED driver generates a boosted PWM signal to drive a PWM transistor in the LED current path such that the PWM transistor maintains a substantially constant VGS, thus minimizing turn-on impedance of the PWM transistor. A current mirror circuit controls peak LED current when the PWM transistor is on. A trimming circuit includes a set of programmable switches to couple or decouple trimming transistor from the LED current path, and allowing for fine calibration of the LED current. By maintaining a low resistance and compensating for current mismatch in the LED current path, the LED driver provides efficient power performance and robustness that is particularly beneficial in high current applications.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: IWATT INC.
    Inventors: Minjong Kim, Enzhu Liang, Xuecheng Jin
  • Publication number: 20130119954
    Abstract: A low-dropout (LDO) voltage regulator includes a switch to generate an output current, and a first sensing module that increases the speed at which the switch is turned off and the output current is decreased in response to detecting a decreasing load current. The LDO regulator further includes a second sensing module that increases the speed at which the switch is turned on and the output current is increased in response to detecting an increasing load current.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 16, 2013
    Applicant: IWATT INC.
    Inventor: iWatt Inc.
  • Publication number: 20130121032
    Abstract: A controller of a switching power converter employs a dynamically adaptive power supply regulation approach that improves low-load and no-load regulation to achieve ultra-low standby power in a switching power converter. Under ultra-low load conditions when a deep-deep pulse width modulation (DDPWM) is applied, the controller decreases the actual on-time of the power switch of the switching power converter by decreasing the “on” duration of the control signal used to turn on or off the power switch, until the “on” duration of the control signal reaches a minimum value. To further reduce the on-time of the power switch, the controller reduces the power applied to the power switch to turn on the switch more slowly, while maintaining the “on” duration of the control signal at a minimum value. The minimum value of the “on” duration of the control signal and the minimum power applied to the switch are dynamically controlled.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 16, 2013
    Applicant: iWatt Inc.
    Inventor: iWatt Inc.
  • Publication number: 20130121049
    Abstract: A controller of a switching power converter sets an actual turn-on time of a switch in the switching power converter in each switching cycle by selecting one of a plurality of valley points of the output voltage of the switching power converter occurring subsequent to the desired turn-on time of the switch. The desired turn-on time of the switch may be calculated according to the regulation scheme employed by the switching power converter. The controller selects one of the plurality of valley points randomly from switching cycle to switching cycle. The controller generates a control signal to turn on the switching power converter at the selected one of the plurality of valley points of the output voltage occurring subsequent to the desired turn-on time.
    Type: Application
    Filed: October 22, 2012
    Publication date: May 16, 2013
    Applicant: IWATT INC.
    Inventor: IWATT INC.
  • Publication number: 20130121044
    Abstract: A controller integrated circuit (IC) for controlling a power converter uses one or more IC pins having plurality of functions such as configuration of a parameter supported by the controller IC and shutdown protection. Several different functions may be supported by a single IC pin, thereby reducing the number of pins required in the controller IC and also reducing the cost of manufacturing the controller IC. The controller IC may also share a comparison circuit among different pins and the different functions provided by those pins. Use of a shared comparison circuit further reduces the cost of manufacturing the controller IC without sacrificing the performance of the IC.
    Type: Application
    Filed: September 12, 2012
    Publication date: May 16, 2013
    Applicant: IWATT INC.
    Inventors: Xiaolin Gao, Yong Li, Qiu Sha, Fuqiang Shi, John William Kesterson, Jiang Chen
  • Publication number: 20130107584
    Abstract: The embodiments herein describe a dynamic metal-oxide-semiconductor field-effect transistor (MOSFET) gate driver system architecture and control scheme. The MOSFET gate driver system dynamically adjusts both the gate driver turn-on-resistance and the gate driver turn-off resistance within a single (i.e., one) switching cycle to reduce electromagnetic interference (EMI) in the system and to minimize the conduction loss of a power MOSFET during operation.
    Type: Application
    Filed: August 7, 2012
    Publication date: May 2, 2013
    Applicant: IWATT, INC.
    Inventors: Yong Li, Fuqiang Shi, Andrew Kwok-Cheung Lee, David Nguyen, Jiang Chen
  • Patent number: 8334662
    Abstract: An adaptive switch mode LED driver provides an intelligent approach to driving multiple strings of LEDs. The LED driver determines an optimal current level for each LED channel from a limited set of allowed currents. The LDO driver then determines a PWM duty cycle for driving the LEDs in each LED channel to provide precise brightness control over the LED channels. Beneficially, the LED driver minimizes the power dissipation in the LDO circuits driving each LED string, while also ensuring that the currents in each LED string are maintained within a limited range. A sample and hold LDO allows PWM control over extreme duty cycles with very fast dynamic response. Furthermore, fault protection circuitry ensures fault-free startup and operation of the LED driver.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 18, 2012
    Assignee: iWatt Inc.
    Inventors: Xuecheng Jin, Yu Cheng Chang, Yang Li, Maofeng Lan, John W. Kesterson, Xiaoyan Wang, Chenghung Pan
  • Publication number: 20120274227
    Abstract: An LED lamp is provided in which the output light intensity of the LEDs in the LED lamp is adjusted based on the input voltage to the LED lamp. A dimmer control unit detects a type of dimmer switch during a configuration process. Using the detected dimmer type, the dimmer control unit generates control signals appropriate for the detected dimmer type to provide regulated current to the LEDs and to achieve the desired dimming effect. The LED lamp can be a direct replacement of conventional incandescent lamps in typical wiring configurations found in residential and commercial building lighting applications that use conventional dimmer switches.
    Type: Application
    Filed: June 13, 2012
    Publication date: November 1, 2012
    Applicant: IWATT INC.
    Inventors: Junjie Zheng, John W. Kesterson, Richard M. Myers, Baorong Chen, Gordon Chen
  • Patent number: 8289732
    Abstract: A controller of an AC/DC flyback switching power supply uses adaptive digital control approaches to control the switching operation of a BJT power switch based on primary-side feedback to regulate the secondary-side constant output voltage and output current, without using the input line voltage. Switching-cycle by switching-cycle peak current control and limit are achieved based on the sensed primary-side current rather than the input line voltage in both constant-voltage and constant-current modes, operating in PWM, PFM and/or combinations of a plurality of PWM and PFM modes. The controller IC does not need a separate pin and ADC circuitry for sensing the input line voltage. The controller IC directly drives the BJT base, and dynamically adjusts the BJT base current amplitude cycle by cycle based on load change.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: October 16, 2012
    Assignee: iWatt Inc.
    Inventors: Yong Li, Jun Zheng, Junjie Zheng, John William Kesterson
  • Publication number: 20120223648
    Abstract: A system that provides an intelligent approach to driving multiple strings of LEDs. A processing device determines an optimal current level for each LED string from a limited set of allowed currents. The processing device also determines a PWM duty cycle for driving the LEDs in each LED string to provide precise brightness control over the LED string. The settings for the current level and duty cycle are transmitted to an LED driver for regulating the current and on-off times of the LED strings. Beneficially, the system reduces the size of the LED driver while leveraging existing resources available in the processing device to operate the LEDs in a power efficient manner.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Applicant: IWATT INC.
    Inventors: Xuecheng Jin, Minjong Kim, Enzhu Liang, John William Kesterson, Xiaoyan Wang
  • Patent number: 8259472
    Abstract: A switch controller is disclosed that adaptively controls the operating frequency of a switching power converter in order to improve one-time load response and repetitive dynamic load responses. During a transition from a high load to low load condition, the switch controller clamps the operating frequency of the switching power converter at an intermediate frequency for a period of time before allowing the operating frequency to return to a frequency associated with the low load condition. The clamped frequency is higher than the frequency associated with the low load condition thereby allowing improved response to a subsequent load change to a high load condition. Thus, the system improves dynamic load response without compromising no-load power consumption.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: September 4, 2012
    Assignee: iWatt Inc.
    Inventors: Yong Li, Fuqiang Shi, Xiaolin Gao, David Nguyen
  • Patent number: 8222832
    Abstract: An LED lamp is provided in which the output light intensity of the LEDs in the LED lamp is adjusted based on the input voltage to the LED lamp. A dimmer control unit detects a type of dimmer switch during a configuration process. Using the detected dimmer type, the dimmer control unit generates control signals appropriate for the detected dimmer type to provide regulated current to the LEDs and to achieve the desired dimming effect. The LED lamp can be a direct replacement of conventional incandescent lamps in typical wiring configurations found in residential and commercial building lighting applications that use conventional dimmer switches.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: July 17, 2012
    Assignee: iWatt Inc.
    Inventors: Junjie Zheng, John W. Kesterson, Richard M. Myers, Baorong Chen, Gordon Chen
  • Publication number: 20120176820
    Abstract: A switch controller is disclosed that adaptively controls the operating frequency of a switching power converter in order to improve one-time load response and repetitive dynamic load responses. During a transition from a high load to low load condition, the switch controller clamps the operating frequency of the switching power converter at an intermediate frequency for a period of time before allowing the operating frequency to return to a frequency associated with the low load condition. The clamped frequency is higher than the frequency associated with the low load condition thereby allowing improved response to a subsequent load change to a high load condition. Thus, the system improves dynamic load response without compromising no-load power consumption.
    Type: Application
    Filed: April 13, 2011
    Publication date: July 12, 2012
    Applicant: IWATT INC.
    Inventors: Yong Li, Fuqiang Shi, Xiaolin Gao, David Nguyen
  • Patent number: 8199539
    Abstract: In a switching power converter, PWM mode and PFM mode are separated into two independent control sections with the control voltage range in each control section determined independently. Each of the PWM and PFM modulation modes cannot operate continuously beyond its boundaries, thereby forming a control gap between the two control sections within which no continuous operation is allowed. In order to supply a load condition within the control gap, the power supply operates at the two boundaries of the control gap. Transition between PWM and PFM modes occurs fast, with low output voltage ripple. No limitation needs to be imposed on the control voltage range in each of the PWM and PFM control sections, because the control parameters in the PWM and PFM control sections need not be matched to one another, due to separation of the PWM and PFM modes by the control gap.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 12, 2012
    Assignee: iWatt Inc.
    Inventors: Xiaoyan Wang, Liang Yan, Junjie Zheng, John William Kesterson, Clarita Poon
  • Patent number: 8199537
    Abstract: A switching power converter detects low load conditions based on the ratio of a first peak current value for peak current switching in constant voltage regulation mode to a second peak current value for peak current switching in constant current regulation mode. The power supply load is considered to have a low load if the ratio is lower than a predetermined threshold. Once a low load condition is detected, the switching frequency of the switching power converter is reduced to a level that minimizes switching loss in the power converter. In addition, the switching power converter also adjusts the switching frequency according to the sensed input line voltage. An offset is added to the switching period to reduce the switching frequency of the switching power converter, as the input line voltage is increased.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 12, 2012
    Assignee: iWatt Inc.
    Inventors: Liang Yan, Xiaoyan Wang, Jun Zheng, Junjie Zheng, Clarita Poon