Patents Assigned to Jeneric/Pentron
  • Patent number: 6994549
    Abstract: Solid free form fabrication techniques such as fused deposition modeling and three-dimensional printing are used to create a dental restoration. Three-dimensional printing comprises inkjet printing a binder into selected areas of sequentially deposited layers of powder. Each layer is created by spreading a thin layer of powder over the surface of a powder bed. Instructions for each layer may be derived directly from a CAD representation of the restoration. The area to be printed is obtained by computing the area of intersection between the desired plane and the CAD representation of the object. All the layers required for an aesthetically sound restoration can be deposited concurrently slice after slice and sintered/cured simultaneously. The amount of green body oversize is equivalent to the amount of shrinkage which occurs during sintering or curing.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: February 7, 2006
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera
  • Patent number: 6872076
    Abstract: A dental restoration comprising a fiber reinforced composite framework and one or more of a randomly dispersed, fiber-filled veneer, a soft particulate filled composite veneer having a strain to failure greater than that of FRC framework and/or a brittle particulate filled composite veneer having a strain to failure value less than that of the FRC framework. The fiber filled veneer is advantageously placed beneath the framework, the soft veneer is advantageously pled where tensile stresses are expected to occur, while the brittle particulate filled veneer is placed where compressive stresses are expected to occur.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: March 29, 2005
    Assignee: Jeneric/Pentron Inc.
    Inventors: Ajit Karmaker, Arun Prasad, Gregg Daskalon
  • Patent number: 6821462
    Abstract: Solid free form fabrication techniques such as fused deposition modeling and three-dimensional printing are used to create a shell used in the manufacture of a dental restoration. Three-dimensional printing includes ink-jet printing a binder into selected areas of sequentially deposited layers of powder. Each layer is created by spreading a thin layer of powder over the surface of a powder bed. Instructions for each layer may be derived directly from a CAD representation of the restoration. The area to be printed is obtained by computing the area of intersection between the desired plane and the CAD representation of the object. All the layers required for an aesthetically sound shell can be deposited concurrently slice after slice and sintered/cured simultaneously.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: November 23, 2004
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Martin L. Schulman, Carlino Panzera
  • Patent number: 6808659
    Abstract: Solid free form fabrication techniques such as fused deposition modeling and three-dimensional printing are used to create a shell or die used in the manufacture of a dental restoration. Three-dimensional printing includes ink-jet printing a binder into selected areas of sequentially deposited layers of powder. Each layer is created by spreading a thin layer of powder over the surface of a powder bed. Instructions for each layer may be derived directly from a CAD representation of the restoration. The area to be printed is obtained by computing the area of intersection between the desired plane and the CAD representation of the object. All the layers required for an aesthetically sound shell can be deposited concurrently slice after slice and sintered/cured simultaneously.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: October 26, 2004
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Martin L. Schulman, Carlino Panzera
  • Patent number: 6802894
    Abstract: This invention is directed to lithium disilicate (Li2Si2O5) based glass-ceramics comprising silica, lithium oxide, alumina, potassium oxide and phosphorus pentoxide. The glass-ceramics are useful in the fabrication of single and multi-unit dental restorations (e.g. anterior bridges) made by heat pressing into refractory investment molds produced using lost wax techniques. The glass-ceramics have good pressability, i.e., the ability to be formed into dental articles by heat-pressing using commercially available equipment. In accordance with one embodiment directed to the process of making the glass-ceramics, the compositions herein are melted at about 1200 ° to about 1600 ° C., thereafter cast into steel molds in the shape of cylindrical blanks (pellets), or alternately, cooled to the crystallization temperature. The resulting glass blank are heat-treated to form glass-ceramic blanks via a one or two step heat-treatment cycle preferably in the temperature range of about 400 ° to about 1100 ° C.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: October 12, 2004
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera
  • Patent number: 6756012
    Abstract: Chromium-cobalt alloys useful for use with high-expansion porcelains in the fabrication of prosthetic dental appliances. The alloys herein comprise cobalt, chromium and manganese as essential components; and include one or more of aluminum, indium, gallium, tin, and germanium; and may include one or more of iron, nickel, palladium and platinum. Optional components include gold, tantalum, niobium, molybdenum, tungsten, vanadium, iridium, ruthenium, rhenium, titanium, silicon, copper, zirconium, hafnium, boron, yttrium, and rare earths metals. The alloys herein are useful with high-expansion dental ceramics and porcelains.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: June 29, 2004
    Assignee: Jeneric/Pentron, Inc.
    Inventor: Arun Prasad
  • Patent number: 6688763
    Abstract: A light curing unit comprising a light detecting panel positioned on the housing of the curing unit to allow the operator of the unit to visibly detect when the light is on. The panel is preferably part of the housing and is positioned proximate the light guide on the curing unit. It covers a section of the unit that exposes the light energy radiating from the lamp located in the housing of the unit. The panel is transparent or translucent, allowing the operator to see the light radiating from the lamp when the unit is in operation. If the unit is in operation and the light suddenly goes out, the operator can immediately detect that the light is out. The operator is then able to continue the curing operation with a new unit or lamp, without having to expend time using an ineffective curing unit.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: February 10, 2004
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Cornelius H. Pameijer, George Zychek
  • Patent number: 6689202
    Abstract: Blocks of material are prepared in a variety of shapes and sizes to be used in the fabrication of models for dental restorations. The material comprises a partially sintered ceramic material. The blocks are used to manufacture molds using CAD/CAM methods and equipment. The molds are useful in the manufacture of dental restorations using ceramics, metals, alloys, or powders thereof, and composite materials. The models milled from the blanks may be used to manufacture a variety of dental restorations including, but not limited to, crowns, bridges, space maintainers, tooth replacement appliances, orthodontic retainers, dentures, posts, jackets, inlays, onlays, facings, veneers, facets, implants, abutments, splints, partial crowns, teeth, cylinders, pins, and connectors.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: February 10, 2004
    Assignee: Jeneric/Pentron Incorporated
    Inventor: Carlino Panzera
  • Patent number: 6660073
    Abstract: A porcelain composition for dental restorations comprising a leucite crystallite phase and a glass matrix phase, wherein the leucite crystallites possess diameters not exceeding about 10 micron. Preferably, the porcelain composition has a maturing temperature from about 750° to about 1050° C. and a coefficient of thermal expansion from about 12×10−6/° C. to about 17.5×10−6/° C., and comprises: Component Amount (wt. %) SiO2 57-66 Al2O3  7-15 K2O  7-15 Na2O  7-12 Li2O 0.5-3.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: December 9, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Carlino Panzera, Lisa M. Kaiser
  • Patent number: 6656420
    Abstract: Dental alloys are provided having a coefficient of thermal expansion in the range from about 8 to about 18×10−6/° C. in the temperature range of 25-500° C. and melting temperatures above about 800° C. but below about 1500° C. The alloys contain gold in combination with a small amount of chromium and/or tantalum. Other elements may also be included with the gold and chromium and/or tantalum to provide the necessary forming, melting, and mechanical properties required to manufacture the desired dental restoration.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: December 2, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Arun Prasad, Martin L. Schulman, Grant P. Day
  • Patent number: 6648645
    Abstract: A ceramic tape is provided in its green state so that it is malleable and formable to a mold for forming a dental restoration, but will not break or crack as it is applied to the mold. Pressure may be applied to further form or adapt the ceramic tape to the shape of the mold. Heat is applied simultaneously with pressure or in a separate step to achieve high density and strength in the ceramic material. A vacuum atmosphere may be used with the application of pressure and/or heat. One or more layers of surface material such as porcelain or composite resin may be applied to the ceramic to form the dental restoration. The process is useful in the manufacture of dental materials or restorations including but not limited to orthodontic appliances, bridges, space maintainers, tooth replacement appliances, splints, crowns, partial crowns, dentures, posts, teeth, jackets, inlays, onlays, facing, veneers, facets, implants, abutments, cylinders, and connectors.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: November 18, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Joseph A. MacDougald, Carlino Panzera, Weitao Jia, Dmitri Brodkin, Martin L. Schulman, Paul Panzera, Bruce Alpert
  • Patent number: 6627248
    Abstract: A dental restoration comprises a ceramic core material having a thin metallic layer disposed on the interior surface of the ceramic core to provide integrity to the ceramic core, eliminate bonding between the ceramic core and the patient's tooth or teeth, and provide an impervious layer on the ceramic interior to reduce infiltration of fluids into the ceramic and reduce cracking of the ceramic restoration. The metallic layer may comprise a metal, alloy or metal-matrix ceramic material. A strong, crack-resistant ceramic restoration is provided having highly aesthetic properties.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: September 30, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventor: Arun Prasad
  • Patent number: 6623271
    Abstract: A mouth simulator apparatus that simulates the atmosphere of the oral environment so that a dental restorative material can be viewed after manufacture and prior to insertion in the patient's mouth. One is able to view the dental restorative material in comparison to shade guide components under the same lighting conditions as present in the oral cavity.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: September 23, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventor: Jana N. Pruden
  • Patent number: 6613273
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: September 2, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Gregg Daskalon, Arun Prasad, Denise L. North, Elie Zammarieh
  • Patent number: 6592372
    Abstract: A method for etching and treating a tooth surface prior to restoration, comprising a solution comprising of an —SO3 terminated compound resin, such as an —SO3H compound resin, and an aldehyde desensitizing compound. In practice, the composition is applied to the tooth surface and not subsequently washed prior to application of an adhesive or other restorative material.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: July 15, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Weitao Jia, Bruce Alpert, Martin L. Schulman
  • Patent number: 6537563
    Abstract: A gel composition for use in etching the surfaces of teeth in preparation for prophylaxis, repair, or restoration, comprising an aqueous solution of an effective quantity of an acid; and a colloidal silica sol, wherein the silica portion of the sol comprises from about 3 to about 20 weight percent of the total etchant composition.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: March 25, 2003
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Weitao Jia, Shuhua Jin
  • Patent number: 6533969
    Abstract: Process for the manufacture of dental restorations using high strength ceramic components. A wax pattern is built around a high strength ceramic component on a die. The wax pattern with the high strength ceramic component is surrounded with investment material. The wax is burned out, leaving a mold with the high strength ceramic component. The mold is filled with a ceramic material, covering the high strength ceramic component, creating a dental restoration.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: March 18, 2003
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Gregg Daskalon, Dmitri Brodkin, Ajit Karmaker, Elie Zammarieh, Martin L. Schulman, Arun Prasad, Carlino Panzera, Paul Panzera
  • Patent number: 6517623
    Abstract: This invention is directed to lithium disilicate (Li2Si2O5) based glass-ceramics comprising silica, lithium oxide, alumina, potassium oxide and phosphorus pentoxide. The glass-ceramics are useful in the fabrication of single and multi-unit dental restorations (e.g. anterior bridges) made by heat pressing into refractory investment molds produced using lost wax techniques. The glass-ceramics have good pressability, i.e., the ability to be formed into dental articles by heat-pressing using commercially available equipment. In accordance with one embodiment directed to the process of making the glass-ceramics, the compositions herein are melted at about 1200° to about 1600° C., thereafter quenched (e.g., water quenched or roller quenched) or cast into steel molds, or alternately, cooled to the crystallization temperature. The resulting glass is heat-treated to form a glass-ceramic via a one or two step heat-treatment cycle preferably in the temperature range of about 400° to about 1100° C.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: February 11, 2003
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera
  • Patent number: 6484791
    Abstract: A disposable plunger for use in a pressing furnace for the fabrication of dental restorations. The plunger is fabricated of a partially sintered ceramic material. The plunger is fabricated by known casting methods. The mold used for making the plunger can be supplied by a manufacturer of molds or can be easily made by using an alumina or similar plunger as a model. Laborious cleaning and grinding are not required with plungers herein described. Cracking problems that occur with prior art plungers are decreased, if not completely eliminated.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: November 26, 2002
    Assignee: Jeneric/Pentron, Inc.
    Inventor: Patricia E. Vidal
  • Patent number: 6455451
    Abstract: This invention is directed to lithium disilicate (Li2Si2O5) based glass-ceramics comprising silica, lithium oxide, alumina, potassium oxide and phosphorus pentoxide. The glass-ceramics are useful in the fabrication of single and multi-unit dental restorations (e.g. anterior bridges) made by heat pressing into refractory investment molds produced using lost wax techniques. The glass-ceramics have good pressability, i.e., the ability to be formed into dental articles by heat-pressing using commercially available equipment. In accordance with one embodiment directed to the process of making the glass-ceramics, the compositions herein are melted at about 1200° to about 1600° C., thereafter quenched (e.g., water quenched or roller quenched) or cast into steel molds, or alternately, cooled to the crystallization temperature. The resulting glass is heat-treated to form a glass-ceramic via a one or two step heat-treatment cycle preferably in the temperature range of about 400° to about 1100° C.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: September 24, 2002
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera