Patents Assigned to Kanagawa Academy of Science and Technology
  • Publication number: 20120164743
    Abstract: A microchannel chip having a microchannel formed in a substrate and a gas-liquid phase separation microchannel whose upper part is covered with a porous film, the gas-liquid phase separation microchannel being connected to the downstream end of the microchannel and having a depth of 10 ?m to 100 ?m. Also, a gas-liquid phase separation method which is a method for separating a liquid-phase flow from a two-phase flow flowing through a microchannel by removing a gas phase, the two-phase flow composed of the gas phase and the liquid phase, which liquid phase flows in the periphery of the above-described microchannel and which gas phase flows interiorly of the liquid-phase flow.
    Type: Application
    Filed: March 31, 2010
    Publication date: June 28, 2012
    Applicants: INSTITUTE OF MICROCHEMICAL TECHNOLOGY CO., LTD., KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY, THE UNIVERSITY OF TOKYO
    Inventors: Arata Aota, Yuko Kihira, Mari Sasaki, Takehiko Kitamori, Kazuma Mawatari
  • Patent number: 8097479
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: January 17, 2012
    Assignee: Kanagawa Academy of Science and Technology
    Inventors: Hideki Masuda, Kenji Yasui, Yasushi Kawamoto
  • Patent number: 8071402
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: December 6, 2011
    Assignee: Kanagawa Academy of Science and Technology
    Inventors: Hideki Masuda, Kenji Yasui, Yasushi Kawamoto
  • Patent number: 8062915
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 22, 2011
    Assignee: Kanagawa Academy of Science and Technology
    Inventors: Hideki Masuda, Kenji Yasui, Yasushi Kawamoto
  • Patent number: 7968216
    Abstract: There have been demands for transparent electrode materials and magnetic materials, each having a wide range of applications. In view of the situations, a novel functional device and a method for forming an oxide material are provided. A functional device includes an AlxGayInzN layer (wherein 0?x?1, 0?y?1, and 0?z?1) and an oxide material layer composed of a metal oxide and formed on the AlxGayInzN layer. The metal oxide may be TiO2. The present invention provides a functional device that includes a group III nitride layer having excellent physical and chemical properties and a film integrally formed thereon. The film reflects less light at the interface and has chemical resistance and high durability.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: June 28, 2011
    Assignees: Toyoda Gosei Co., Ltd., Kanagawa Academy of Science and Technology
    Inventors: Taro Hitosugi, Yutaka Furubayashi, Tetsuya Hasegawa, Yasushi Hirose, Junpei Kasai, Miki Moriyama
  • Patent number: 7858206
    Abstract: With regard to a substrate for a transparent electrode and transparent conductive thin film each having transparency and conductivity, a transparent metal material and transparent electrode are provided which are capable of being stably supplied and are composed of raw materials with superior chemical resistance. When a metal oxide layer (12) composed of an anatase type crystal structure is provided on a substrate (11) to constitute the metal oxide layer (12) by M:TiO2, low resistivity is achieved while internal transmittance is maintained. M:TiO2 obtained by substituting other atoms (Nb, Ta, Mo, As, Sb, or W) for Ti of the anatase type TiO2 enable maintenance of transparency and remarkably improvement of electric conductivity.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: December 28, 2010
    Assignee: Kanagawa Academy of Science and Technology
    Inventors: Yutaka Furubayashi, Tetsuya Hasegawa, Taro Hitosugi
  • Patent number: 7849874
    Abstract: A slide valve apparatus includes a first member having a first fluid channel for allowing a fluid to flow therethrough, a second member sliding along the first member and having a second fluid channel formed in a manner to communicate with the first fluid channel, and a first elastic membrane formed in the sliding surface along which the second member and the first member slide relative to each other and having a first communicating hole communicating with the first fluid channel. In manufacturing the slide valve apparatus, a gas is spurted from the open edge of the first fluid channel in at least a stage between the start up of the step of forming the elastic membrane and the end of the step of baking the elastic membrane so as to form in the elastic membrane the communicating hole communicating with the first fluid channel.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: December 14, 2010
    Assignees: Kabushiki Kaisha Toshiba, Kanagawa Academy of Science and Technology
    Inventors: Masahiro Kuwata, Hajime Sudo, Takehiko Kitamori
  • Publication number: 20100247429
    Abstract: Provided is a microchip capable of integrating liquid evaporation as an operation on the microchip. In the microchip 10 having a gas flow path 13 inside, liquid is dispersed by capillary action and pooled in a pool portion 12 at a bottom of the gas flow path 13, and at least a part of the liquid pooled in the pool portion 12 is evaporated. As the capillary action is used, the liquid can be dispersed and pooled in the pool portion 12 at the bottom of the gas flow path 13 inside the microchip 10. Besides, the liquid pooled in the pool portion 12 remains in the pool portion by a surface tension even if gas is made to flow in the gas flow path 13 or the gas flow path is evacuated for evaporation. This enables highly efficient evaporation inside the microchip 10.
    Type: Application
    Filed: October 30, 2008
    Publication date: September 30, 2010
    Applicants: JFE ENGINEERING CORPORATION, KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY
    Inventors: Katsuhiko Ohsaki, Shigeki Yamazaki, Takehiko Kitamori, Masaharu Ueno, Kazuma Mawatari, Yoshikuni Kikutani
  • Publication number: 20100196665
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Application
    Filed: March 26, 2010
    Publication date: August 5, 2010
    Applicant: KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY
    Inventors: Hideki MASUDA, Kenji YASUI, Yasushi KAWAMOTO
  • Publication number: 20100177392
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Application
    Filed: March 26, 2010
    Publication date: July 15, 2010
    Applicant: KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY
    Inventors: Hideki MASUDA, Kenji YASUI, Yasushi KAWAMOTO
  • Publication number: 20100178466
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Application
    Filed: March 26, 2010
    Publication date: July 15, 2010
    Applicant: KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY
    Inventors: Hideki Masuda, Kenji Yasui, Yasushi Kawamoto
  • Publication number: 20100163931
    Abstract: There is disclosed a hexagonal Group III-V nitride layer exhibiting high quality crystallinity capable of improving the properties of a semiconductor device such as a light emitting element. This nitride layer is a Group III-V nitride layer belonging to hexagonal crystal formed by growth on a substrate having a different lattice constant, which has a growth-plane orientation of {1-100} and in which a full width at half maximum b1 of angle dependence of X-ray diffraction intensity in a {1-210} plane perpendicular to the growth-plane upon X-ray incident angle from a direction parallel to the growth-plane satisfies the condition of 0.01°?b1?0.5°, or the full width at half maximum b2 of angle dependence of X-ray diffraction intensity in a {0001} plane upon X-ray incident angle from a direction parallel to the growth-plane satisfies the condition of 0.01°?b2?0.5°.
    Type: Application
    Filed: March 19, 2007
    Publication date: July 1, 2010
    Applicants: Kanagawa Academy of Science and Technology, The University of Tokyo, Mitsubishi Chemical Corporation
    Inventors: Hiroshi Fujioka, Atsushi Kobayashi, Hideyoshi Horie, Hidetaka Amanai, Satoru Magao
  • Patent number: 7713768
    Abstract: In this method for producing an anti-reflective film, pores are formed on a surface of a polymer molding material to continuously change a refractive index and then reduce reflectance, in which anodic oxidized porous alumina, in which pores having a tapered shape and whose pore diameter continuously changes, are formed by repeating anodic oxidation at about the same formation voltage and pore diameter enlargement treatment, is used as a mold, or a stamper, which is produced by using the anodic oxidized porous aluminum as a mold, is used as a mold.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: May 11, 2010
    Assignee: Kanagawa Academy of Science and Technology
    Inventors: Hideki Masuda, Kenji Yasui, Yasushi Kawamoto
  • Patent number: 7687431
    Abstract: A nanotube-shaped titania having an aspect ratio of 6 or greater can be produced by anodizing a titanium metal or an alloy containing mainly titanium in an electrolyte solution containing a halogen atom-containing ion, such as a perchloric acid aqueous solution.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: March 30, 2010
    Assignees: Nippon Oil Corporation, Kanagawa Academy of Science and Technology
    Inventors: Keisuke Nakayama, Takaya Kubo, Yoshinori Nishikitani, Hideki Masuda
  • Publication number: 20100060981
    Abstract: An objective of the present invention is to provide a circular dichroism thermal lens microscope apparatus capable of identifying and quantifying optically active samples in ultra-trace amounts, and which has a higher sensitivity than conventional apparatuses. The objective is achieved by a circular dichroism thermal lens microscope apparatus which beams excitation light and detection light into an optical microscope, where the detection light enters a thermal lens formed by irradiating a sample with the excitation light, and a substance in a sample is detected by determining the diffusion of the detection light by the thermal lens, and where the excitation light is modulated by a phase-modulation element, so as to identify or quantify an optical isomer.
    Type: Application
    Filed: February 10, 2006
    Publication date: March 11, 2010
    Applicants: Kanagawa Academy of Science and Technology, Institute of Microchemical Technology, The University of Tokyo
    Inventors: Masayo Yamauchi, Akihide Hibara, Takehiko Kitamori, Kazuma Mawatari, Manabu Tokeshi
  • Publication number: 20100062558
    Abstract: When a p-layer 4 composed of GaN is maintained at ordinary temperature and TNO is sputtered thereon by an RF magnetron sputtering method, a laminated TNO layer 5 is in an amorphous state. Then, there is included a step of thermally treating the amorphous TNO layer in a reduced-pressure atmosphere where hydrogen gas is substantially absent to thereby crystallize the TNO layer. At the sputtering, an inert gas is passed through together with oxygen gas, and volume % of the oxygen gas contained in the gas passed through is 0.10 to 0.15%. In this regard, oxygen partial pressure is 5×10?3 Pa or lower. The temperature of the thermal treatment is 500° C. for about 1 hour.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 11, 2010
    Applicants: TOYODA GOSEI CO., LTD., Kanagawa Academy of Science and Technology
    Inventors: Koichi Goshonoo, Miki Moriyama, Taro Hitosugi, Tetsuya Hasegawa, Junpei Kasai
  • Publication number: 20100006134
    Abstract: A nanotube-shaped titania having an aspect ratio of 6 or greater can be produced by anodizing a titanium metal or an alloy containing mainly titanium in an electrolyte solution containing a halogen atom-containing ion, such as a perchloric acid aqueous solution.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 14, 2010
    Applicants: Nippon Oil Corporation, Kanagawa Academy of Science and Technology
    Inventors: Keisuke Nakayama, Takaya Kubo, Yoshinori Nishikitani, Hideki Masuda
  • Patent number: 7586084
    Abstract: An optical detection device image is disclosed that allows fast measurements using near-field light at high resolution and high efficiency but without necessity of position alignment of an optical fiber probe. The optical detection device includes an optical fiber probe having a core for propagating light with an optical probe being formed at a front end of the core; a movement control unit to move the optical fiber probe to approach or depart from a sample; and a detection unit to detect light from the sample surface, wherein on the front end surface of the core of the optical probe, there are a first exit section on a peripheral side for emitting propagating light and a second exit section for seeping out the near-field light, the first exit section and the second exit section are formed in a concentric manner, and the tilt angle of the first exit section is different from the tilt angle of the second exit section.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: September 8, 2009
    Assignees: Ricoh Company, Ltd., Kanagawa Academy of Science and Technology
    Inventors: Izumi Itoh, Masato Takada, Taroh Terashi, Motoichi Ohtsu, Takashi Yatsui, Motonobu Kourogi
  • Patent number: 7586085
    Abstract: The broad range measurement exploiting the usual propagated light and the high resolution measurement mode exploiting near-field light are to be accomplished with a sole as-assembled optical probe. To this end, light radiated through an optical probe 13 having a light shielding coating layer 33 formed for defining a light radiating aperture D or light radiated at a core 31 of the optical probe 13 is propagated, as the optical probe 13 is moved in a direction towards and away from a surface for measurement 2a. The core of the optical probe is coated with a light shielding coating layer 33. In this manner, a spot of propagated light propagated through the core 31 or a spot of near-field light seeping from the light radiating aperture D is formed on the surface for measurement 2a, and light derived from the spot of light is detected.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: September 8, 2009
    Assignees: Kanagawa Academy of Science and Technology, Hoden Seimitsu Kakokenkyusho Co., Ltd., Ricoh Company, Ltd.
    Inventors: Motoichi Ohtsu, Motonobu Kourogi, Shuji Mononobe, Takashi Yatsui, Koji Yamamoto, Toshiyuki Inokuchi, Masato Takada
  • Publication number: 20090147405
    Abstract: A method for manufacturing a magnetic recording medium which has a substrate and a magnetic layer formed on the substrate, the method including: forming the magnetic layer over a convexo-concave pattern provided on a surface of a mold, and releasing the mold from the magnetic layer formed on the substrate.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 11, 2009
    Applicants: FUJITSU LIMITED, KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY
    Inventors: Hirotaka Oshima, Hideyuki Kikuchi, Takeshi Morikawa, Hiroshi Nakao, Ken-ichi Itoh, Hideki Masuda, Kazuyuki Nishio