Patents Assigned to Kensey Nash Corporation
  • Patent number: 8721626
    Abstract: In an embodiment, the invention provides a catheter suitable for use in performing a procedure within a vessel, lumen or organ of a living having a distal end which is steerable, such as upon the application of compression. The catheter may be of the over the wire type, or alternatively may be a rapid exchange catheter. The catheter may provide for a rotating element which may be used to open a clogged vessel, or alternatively to provide information about adjacent tissues, such as may be generated by imaging or guiding arrangements using tissue detection systems known in the art, e.g., ultrasound, optical coherence reflectometry, etc. For rapid exchange catheters having a rotating element, there is provided an offset drive assembly to allow the rotary force to be directed from alongside the guidewire to a location coaxial to and over the guidewire.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 13, 2014
    Assignee: Kensey Nash Corporation
    Inventors: William T. Fisher, David E. Yaeger, John E. Nash, Douglas G. Evans
  • Patent number: 8697108
    Abstract: Porous polymers having a plurality of openings or chambers that are highly convoluted, with each chamber being defined by multiple, thin, flat partitions are produced by a new gel enhanced phase separation technique. In a preferred embodiment, a second liquid is added to a polymer solution, the second liquid causing the solution to increase in viscosity. With sufficient polymer and second liquid present, the increase in viscosity can be up to that of a gel. The gel can then be shaped as needed. Subsequent solvent extraction leaves the porous polymeric body of defined shape. The porous polymers have utility as medical prostheses, the porosity permitting ingrowth of neighboring tissue. A second material may be incorporated into the chambers, thereby creating a microstructure filling the voids of the macrostructure.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: April 15, 2014
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Scott M. Goldman
  • Patent number: 8691136
    Abstract: A device is formed by the process into a bone screw or fastener, wherein the head has a degree of polymer alignment and strength, and wherein the shank has a higher degree of polymer alignment and strength. In practice of the present invention, the polymer slug is pressed into the die cavity by the actuation of ram press, causing the slug to conform to the die cavity. Through this process, the polymer molecular orientation is aligned to different degrees, in different zones of the device.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 8, 2014
    Assignee: Kensey Nash Corporation
    Inventors: Joseph DeMeo, Patrick E. Heam, Robert L. McDade
  • Patent number: 8683895
    Abstract: There is provided a device for the delivery of surgical fasteners. The device improves the penetration of the fasteners and reduces the effort required for a surgeon to hold opposing pressure in order to deploy the fastener. The device comprises a lever in mechanical cooperation with a resilient element for storing energy; a drive mechanism which cooperates with at least one surgical fastener; and a release mechanism for rapidly releasing stored energy from the resilient element to the drive mechanism. In certain embodiments, at least partial depression of the lever stores energy in the resilient element while release of the lever from the at least partial depressed position does not release the stored energy from the resilient element. Additionally, the drive mechanism converts stored energy from the resilient element upon activation of the release mechanism to deliver the at least one surgical fastener.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 1, 2014
    Assignee: Kensey Nash Corporation
    Inventor: John E. Nash
  • Patent number: 8679163
    Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, consisting of a highly porous body, made from a polymer, the porous body having a plurality of pores, such that the device is capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, and the polymer fixation device is rigid enough to protect a tissue from shifting. Preferably, the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device consists of a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may feature additional materials which serve to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively the additional materials serve to deliver therapies to the living being.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: March 25, 2014
    Assignee: Kensey Nash Corporation
    Inventor: Timothy A. Ringeisen
  • Patent number: 8679164
    Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, comprising a highly porous body, the porous body comprising a polymer, the porous body comprising a plurality of pores, the porous body being capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, the polymer fixation device being rigid enough to protect a tissue from shifting. In a preferred embodiment the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device comprises a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may comprise additional materials; the additional materials serving to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively as a method of delivering therapy or other agents to the system of a living being.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: March 25, 2014
    Assignee: Kensey Nash Corporation
    Inventor: Timothy A. Ringeisen
  • Publication number: 20140044688
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other facts. Highs speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8617042
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 31, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8562501
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: October 22, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8556794
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 15, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8523801
    Abstract: An intra-luminal device for the extraction of occlusive or partially occlusive material is disclosed. Said device comprises a novel catheter extension which minimizes cavitation of extracted fluids and also allows the better navigation of tortuous lumens or vasculature.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 3, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Gregory Walters
  • Publication number: 20130211520
    Abstract: The construct described herein allows opposing tissues to form adhesions with either side of the construct, as part of the natural healing process. The construct however is multi-layered, wherein the space between the layers provides the protection from unwanted adhesions forming between and bonding separate tissues. In one embodiment, this space between layers of the construct may be developed spontaneously, that is the multiple layers are released by design after a finite time and the opposing tissues are free to move independent of each other, free of adhesions.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 15, 2013
    Applicant: Kensey Nash Corporation
    Inventor: Kensey Nash Corporation
  • Patent number: 8485958
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 16, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8469871
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: June 25, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8445554
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Amanda Turner, Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Patent number: 8403996
    Abstract: An implantable device for facilitating the healing of voids in bone, cartilage and soft tissue is disclosed. A preferred embodiment includes a cartilage region comprising a polyelectrolytic complex joined with a subchondral bone region. The cartilage region, of this embodiment, enhances the environment for chondrocytes to grow articular cartilage; while the subchondral bone region enhances the environment for cells which migrate into that region's macrostructure and which differentiate into osteoblasts. A hydrophobic barrier exists between the regions, of this embodiment. In one embodiment, the polyelectrolytic complex transforms to hydrogel, following the implant procedure.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 26, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John H. Brekke, Gino Bradica, Scott M. Goldman
  • Patent number: 8394006
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 12, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8389588
    Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 5, 2013
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Robert L. McDade
  • Patent number: D690024
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 17, 2013
    Assignee: Kensey Nash Corporation
    Inventor: Dennis M. Sauro
  • Patent number: D690825
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: October 1, 2013
    Assignee: Kensey Nash Corporation
    Inventor: Dennis M. Sauro