Patents Assigned to Kensey Nash Corporation
  • Patent number: 8377080
    Abstract: A system and method of use for effecting the bypass or other anastomosis, connection, or port in a portion of a native blood vessel, duct, lumen or other tubular organ within the body of a living being. The system includes a connector assembly and a deployment instrument for carrying the device to the desired position within the vessel, duct, lumen or tubular organ. The system includes a piercer-dilator instrument to form an opening in the wall of the vessel, duct, lumen or tubular organ into which a connector assembly may be deployed by the deployment instrument. The connector assembly may be at least partially formed of a resorbable material and includes movable members for securing it to the tissue of the vessel, duct, lumen or tubular organ contiguous with the opening. Other components may be included in the device for expediting the procedure, with or without the use of sutures.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 19, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Douglas G. Evans, David M. Hoganson
  • Publication number: 20130029829
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Application
    Filed: August 7, 2012
    Publication date: January 31, 2013
    Applicant: KENSEY NASH CORPORATION
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8361164
    Abstract: The construct described herein allows opposing tissues to form adhesions with either side of the construct, as part of the natural healing process. The construct however is multi-layered, wherein the space between the layers provides the protection from unwanted adhesions forming between and bonding separate tissues. In one embodiment, this space between layers of the construct may be developed spontaneously, that is the multiple layers are released by design after a finite time and the opposing tissues are free to move independent of each other, free of adhesions.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Kensey Nash Corporation
    Inventor: David M. Hoganson
  • Patent number: 8317672
    Abstract: A single use, sterile, self-contained, compact, easy to use centrifugal separation unit provides for quick, reliable platelet concentration from whole blood. Anti-coagulated blood is injected through an elastomeric seal into a separation chamber featuring a tapered barrel and an end cap. At least one port is located in the end cap, at a desired radius from the longitudinal axis. The centrifugal field created by rotation of the chamber stratifies the blood radially, with red blood cells adjacent the wall of the barrel, and plasma found closest to the longitudinal axis. Opening the port causes the pressure of the centrifugal field to eject red blood cells or plasma, thereby increasing the concentration of platelets remaining in the chamber. After ceasing chamber rotation, the concentrated platelets are recovered.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 27, 2012
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8314084
    Abstract: An implantable delivery system includes a macrostructure formed of bioresorbable material selected from a group of alphahydroxy acids and defined to include an internal architecture of intercommunicating void spaces. A first cytotoxic agent in the preferred form of cisplatin is joined to the macrostructure during formation. A microstructure in the preferred form of a blend of high molecular weight hyaluronic acid conjugated with a second cytotoxic agent in the preferred form of paclitaxel and of pure high molecular weight hyaluronic acid is invested in the void spaces. Thus, when implanted, the paclitaxel and cisplatin are released sequentially, each initially at high level concentrations followed by lower release. Radiotherapy can be begun after the release of the paclitaxel has been completed but while the cisplatin is being released.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 20, 2012
    Assignee: Kensey Nash Corporation
    Inventors: John H. Brekke, John H. Gubbe
  • Patent number: 8267871
    Abstract: An apparatus for modulating the pressure of a fluid such as a gas within the expandable portion of a guide wire catheter. A preferred embodiment apparatus features a mechanism for controllably gripping and releasing the open, proximal end of a tubular guide wire, a mechanism for introducing a fluid to a desired pressure and volume into the expandable portion of the tubular guide wire through the open end, and, while maintaining the pressure and volume of fluid in the tubular guide wire, a mechanism for introducing a sealing member into the open end of the tubular guide wire to seal the fluid in the tubular guide wire. In a particularly preferred embodiment, the apparatus also features a deflation tool for piercing the seal and letting the fluid out. Using this apparatus, the tubular guide wire can be re-sealed and re-opened as necessary.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: September 18, 2012
    Assignee: Kensey Nash Corporation
    Inventors: Mark Eberhardt, William T. Fisher, John E. Nash, Dennis M. Sauro
  • Patent number: 8251978
    Abstract: An intra-luminal device for the extraction of occlusive or partially occlusive material is disclosed. The device includes a novel catheter extension which minimizes cavitation of extracted fluids and also allows the better navigation of tortuous lumens or vasculature.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: August 28, 2012
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Gregory Walters
  • Patent number: 8226673
    Abstract: A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub\-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub\-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 24, 2012
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher, Charles W. Dodson, Jr.
  • Patent number: 8157787
    Abstract: A pumping system for use in medical applications where liquids must be infused and aspirated from a mammalian patient, and whose economics are such that it is cost effective to simply dispose of it after a single use. The system features positive displacement pump(s) such as reciprocating pump(s) containing a damping mechanism to dampen out the peaks and valleys in the fluid pressure that is pumped, which is important for preventing cavitation. The system furthermore features a shut-off valve on the extraction side so that certain injected fluids such as contrast medium, are not immediately pumped out of the patient. In a preferred embodiment, the system also features means for independently controlling the fluid pressure/volume on the infusion and extraction sides, self-priming capability, a continuous fluid path, and visual air bubble detection, with viewports located at important points in the fluid path, such as at pumps and valves.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 17, 2012
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Gregory Walters, Stephen Heiman, Jim Barnitz, Pete Fatone
  • Patent number: 8114161
    Abstract: A system for repairing a vertebral disc defect, such as hernia or bulge, a full or partial tear in the annulus, or a weakened annulus wall as a result of an excision procedure. The system introduces a treatment device arranged to repair the defect, and may prevent the leakage of fluid from the nucleus. The components of the device may be resorbable materials, and may induce the ingrowth of cellular material into the components. The system may feature a locating device to ensure proper placement of the treatment device.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 14, 2012
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Jeffrey C. Kelly, Gino Bradica, Michael K. Carouge, Brian Oeffinger
  • Publication number: 20110237858
    Abstract: An implantable delivery system includes a macrostructure formed of bioresorbable material selected from a group of alphahydroxy acids and defined to include an internal architecture of intercommunicating void spaces. A first cytotoxic agent in the preferred form of cisplatin is joined to the macrostructure during formation. A microstructure in the preferred form of a blend of high molecular weight hyaluronic acid conjugated with a second cytotoxic agent in the preferred form of paclitaxel and of pure high molecular weight hyaluronic acid is invested in the void spaces. Thus, when implanted, the paclitaxel and cisplatin are released sequentially, each initially at high level concentrations followed by lower release. Radiotherapy can be begun after the release of the paclitaxel has been completed but while the cisplatin is being released.
    Type: Application
    Filed: May 27, 2011
    Publication date: September 29, 2011
    Applicant: Kensey Nash Corporation
    Inventors: John H. Brekke, John H. Gubbe
  • Publication number: 20110208169
    Abstract: There is provided a device for the delivery of surgical fasteners. The device improves the penetration of the fasteners and reduces the effort required for a surgeon to hold opposing pressure in order to deploy the fastener. The device comprises a lever in mechanical cooperation with a resilient element for storing energy; a drive mechanism which cooperates with at least one surgical fastener; and a release mechanism for rapidly releasing stored energy from the resilient element to the drive mechanism. In certain embodiments, at least partial depression of the lever stores energy in the resilient element while release of the lever from the at least partial depressed position does not release the stored energy from the resilient element. Additionally, the drive mechanism converts stored energy from the resilient element upon activation of the release mechanism to deliver the at least one surgical fastener.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Applicant: KENSEY NASH CORPORATION
    Inventor: John E. Nash
  • Patent number: 7998107
    Abstract: A pumping system for use in medical applications where liquids must be infused and aspirated from a mammalian patient, and whose economics are such that it is cost effective to simply dispose of it after a single use. The system features positive displacement pump(s) such as reciprocating pump(s) containing a damping mechanism to dampen out the peaks and valleys in the fluid pressure that is pumped, which is important for preventing cavitation. The system furthermore features a shut-off valve on the extraction side so that certain injected fluids such as contrast medium, are not immediately pumped out of the patient. In a preferred embodiment, the system also features means for independently controlling the fluid pressure/volume on the infusion and extraction sides, self-priming capability, a continuous fluid path, and visual air bubble detection, with viewports located at important points in the fluid path, such as at pumps and valves.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: August 16, 2011
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Gregory Walters, Stephen Heiman, Jim Barnitz, Pete Fatone
  • Patent number: 7981129
    Abstract: A system for opening a lumen in an occluded blood vessel, e.g.., a coronary bypass graft, of a living being. The method entails using an instrument to deploy the stent at occlusive material within the blood vessel to open the lumen, whereupon some debris may be produced. Operating a debris extraction system for removing debris during deployment of the stent.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: July 19, 2011
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher, Charles W. Dodson, Jr.
  • Patent number: 7972294
    Abstract: An intra-luminal device for the extraction of occlusive or partially occlusive material is disclosed. The device includes a novel catheter extension which minimizes cavitation of extracted fluids and also allows the better navigation of tortuous lumens or vasculature.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: July 5, 2011
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, Gregory Walters
  • Patent number: 7963997
    Abstract: An implantable device for facilitating the healing of voids in bone, cartilage and soft tissue is disclosed. A preferred embodiment includes a cartilage region comprising a polyelectrolytic complex joined with a subchondral bone region. The cartilage region, of this embodiment, enhances the environment for chondrocytes to grow articular cartilage; while the subchondral bone region enhances the environment for cells which migrate into that region's macrostructure and which differentiate into osteoblasts. A hydrophobic barrier exists between the regions, of this embodiment. In one embodiment, the polyelectrolytic complex transforms to hydrogel, following the implant procedure.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 21, 2011
    Assignee: Kensey Nash Corporation
    Inventors: John H. Brekke, Gino Bradica, Scott M. Goldman
  • Patent number: 7951394
    Abstract: An implantable delivery system includes a macrostructure formed of bioresorbable material selected from a group of alphahydroxy acids and defined to include an internal architecture of intercommunicating void spaces. A first cytotoxic agent in the preferred form of cisplatin is joined to the macrostructure during formation. A microstructure in the preferred form of a blend of high molecular weight hyaluronic acid conjugated with a second cytotoxic agent in the preferred form of paclitaxel and of pure high molecular weight hyaluronic acid is invested in the void spaces. Thus, when implanted, the paclitaxel and cisplatin are released sequentially, each initially at high level concentrations followed by lower release. Radiotherapy can be begun after the release of the paclitaxel has been completed but while the cisplatin is being released.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: May 31, 2011
    Assignee: Kensey Nash Corporation
    Inventors: John H. Brekke, John H. Gubbe
  • Patent number: 7931695
    Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, comprising a highly porous body, the porous body comprising a polymer, the porous body comprising a plurality of pores, the porous body being capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, the polymer fixation device being rigid enough to protect a tissue from shifting. In a preferred embodiment the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device comprises a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may comprise additional materials; the additional materials serving to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively as a method of delivering therapy or other agents to the system of a living being.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: April 26, 2011
    Assignee: Kensey Nash Corporation
    Inventor: Timothy A. Ringeisen
  • Patent number: 7833239
    Abstract: A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being's vascular system. The system introduces an infusate liquid at a first flow rate to the occluded portion of the blood vessel, and withdraws that liquid and some blood at a second and higher flow rate. This action creates a differential flow in the occluded blood vessel portion and thereby prevent particles of occlusive material from flowing into any upstream blood vessel or downstream blood vessel in said living being's vascular system.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: November 16, 2010
    Assignee: Kensey Nash Corporation
    Inventor: John E. Nash
  • Patent number: 7824414
    Abstract: A system for repairing a vertebral disc defect, such as hernia or bulge, a full or partial tear in the annulus, or a weakened annulus wall as a result of an excision procedure. The system introduces a treatment device arranged to repair the defect, and may prevent the leakage of fluid from the nucleus. The components of the device may be resorbable materials, and may induce the ingrowth of cellular material into the components. The system may feature a locating device to ensure proper placement of the treatment device.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: November 2, 2010
    Assignee: Kensey Nash Corporation
    Inventor: Douglas G. Evans