Patents Assigned to Kepler Compute Inc.
  • Publication number: 20230420022
    Abstract: Described is a low power, high-density non-volatile differential memory bit-cell. The transistors of the differential memory bit-cell can be planar or non-planer and can be fabricated in the frontend or backend of a die. A bit-cell of the non-volatile differential memory bit-cell comprises first transistor first non-volatile structure that are controlled to store data of a first value. Another bit-cell of the non-volatile differential memory bit-cell comprises second transistor and second non-volatile structure that are controlled to store data of a second value, wherein the first value is an inverse of the second value. The first and second volatile structures comprise ferroelectric material (e.g., perovskite, hexagonal ferroelectric, improper ferroelectric).
    Type: Application
    Filed: April 28, 2021
    Publication date: December 28, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh
  • Patent number: 11848386
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: December 19, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Publication number: 20230395134
    Abstract: A disturb mitigation scheme is described for a 1TnC or multi-element ferroelectric gain bit-cell where after writing to a selected capacitor of the bit-cell, a cure phase is initiated. Between the cure phase and the write phase, there may be zero or more cycles where the selected word-line, bit-line, and plate-lines are pulled-down to ground. The cure phase may occur immediately before the write phase. In the cure phase, the word-line is asserted again just like in the write phase. In the cure phase, the voltage on bit-line is inverted compared to the voltage on the bit-line in the write phase. By programming a value in a selected capacitor to be opposite of the value written in the write phase of that selected capacitor, time accumulation of disturb is negated. This allows to substantially zero out disturb field on the unselected capacitors of the same bit-cell and/or other unselected bit-cells.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 7, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Tanay Gosavi, James David Clarkson, Neal Reynolds, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11837664
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor, which in turn comprises a polar layer comprising a crystalline base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen, wherein the dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: December 5, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11791233
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: October 17, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Publication number: 20230308102
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 28, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Guarav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Publication number: 20230298905
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230301113
    Abstract: A device structure comprises a first conductive interconnect, an electrode structure on the first conductive interconnect, an etch stop layer laterally surrounding the electrode structure; a plurality of memory devices above the electrode structure, where individual ones of the plurality of memory devices comprise a dielectric layer comprising a perovskite material. The device structure further comprises a plate electrode coupled between the plurality of memory devices and the electrode structure, where the plate electrode is in direct contact with a respective lower most conductive layer of the individual ones of the plurality of memory devices. The device structure further includes an insulative hydrogen barrier layer on at least a sidewall of the individual ones of the plurality of memory devices; and a plurality of via electrodes, wherein individual ones of the plurality of via electrodes are on a respective one of the individual ones of the plurality of memory devices.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Rafael Rios, Amrita Mathuriya, Niloy Mukherjee, Mauricio Manfrini, Rajeev Kumar Dokania, Somilkumar J. Rathi, Sasikanth Manipatruni
  • Patent number: 11758708
    Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: September 12, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11757043
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: September 12, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Publication number: 20230284456
    Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 7, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20230284455
    Abstract: The memory bit-cell formed using the ferroelectric capacitor results in a taller and narrower bit-cell compared to traditional memory bit-cells. As such, more bit-cells can be packed in a die resulting in a higher density memory that can operate at lower voltages than traditional memories while providing the much sought after non-volatility behavior. The pillar capacitor includes a plug that assists in fabricating a narrow pillar.
    Type: Application
    Filed: August 30, 2022
    Publication date: September 7, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Gaurav Thareja, Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11751403
    Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: September 5, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11741428
    Abstract: A method for monetizing ferroelectric process development is described. In at least one embodiment, the method comprises procuring a target material based on a model driven selection which is based on charge, mass and magnetic moment, and/or mass of the atomic constituents of the target material. The method further comprises applying the target material to a fabrication process to build a ferroelectric device. The method further comprises generating a notification indicative of procurement of the target material and application of the target material. The method further comprises electronically transmitting the notification to a customer, wherein the notification includes an invoice having a line item associated with a cost of the procuring of the target material and application of the target material.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya
  • Patent number: 11744081
    Abstract: Described are ferroelectric device film stacks which include a templating or texturing layer or material deposited below a ferroelectric layer, to enable a crystal lattice of the subsequently deposited ferroelectric layer to template off this templating layer and provide a large degree of preferential orientation despite the lack of epitaxial substrates.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Ramamoorthy Ramesh, Sasikanth Manipatruni, James Clarkson, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Jason Y. Wu
  • Patent number: 11742860
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11735245
    Abstract: A memory is provided which comprises a capacitor including non-linear polar material. The capacitor may have a first terminal coupled to a node (e.g., a storage node) and a second terminal coupled to a plate-line. The capacitors can be a planar capacitor or non-planar capacitor (also known as pillar capacitor). The memory includes a transistor coupled to the node and a bit-line, wherein the transistor is controllable by a word-line, wherein the plate-line is parallel to the bit-line. The memory includes a refresh circuitry to refresh charge on the capacitor periodically or at a predetermined time. The refresh circuit can utilize one or more of the endurance mechanisms. When the plate-line is parallel to the bit-line, a specific read and write scheme may be used to reduce the disturb voltage for unselected bit-cells. A different scheme is used when the plate-line is parallel to the word-line.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: August 22, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11737283
    Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: August 22, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11729995
    Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: August 15, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11729991
    Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: August 15, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni