Patents Assigned to KLA-Tencor Technologies Corp.
  • Patent number: 7148073
    Abstract: Methods and systems for preparing a substrate for analysis are provided. One method includes removing a portion of a copper structure on the substrate using an etch chemistry in combination with an electron beam. The etch chemistry is substantially inert with respect to the copper structure except in the presence of the electron beam. Other methods involve forming masking layers on a substrate that will protect the substrate during etching. For example, one method includes exposing a first portion of the substrate to an electron beam. A second portion of the substrate not exposed to the electron beam includes a copper structure. The method also includes exposing the substrate to a fluorine containing chemical. The fluorine containing chemical bonds to the first portion but not the second portion to form a fluorine containing layer on the first portion.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 12, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: David Soltz, Mehran Nasser-Ghodsi, Harold Winters, John W. Coburn, Alexander Gubbens, Gabor Toth
  • Patent number: 7142992
    Abstract: Hybrid methods for classifying defects in semiconductor manufacturing are provided. The methods include applying a flexible sequence of rules for defects to inspection data. The sequence of rules includes deterministic rules, statistical rules, hybrid rules, or some combination thereof. The rules included in the sequence may be selected by a user using a graphical interface. The method also includes classifying the defects based on results of applying the sequence of rules to the inspection data.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: November 28, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Patrick Huet, Maruti Shanbhag, Sandeep Bhagwat, Michal Kowalski, Vivekanand Kini, David Randall, Sharon McCauley, Tong Huang, Jianxin Zhang, Kenong Wu, Lisheng Gao, Ariel Tribble, Ashok Kulkarni, Cecelia Anne Campochiaro
  • Patent number: 7142941
    Abstract: A computer-implemented method and a storage medium adapted to identify potential causes of lithography process failure or drift is provided.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: November 28, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Chris Mack, Robert Jones, Jeffrey Byers
  • Patent number: 7139083
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, a composition and a thickness. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: November 21, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: John Fielden, Ady Levy, Kyle A. Brown, Gary Bultman, Mehrdad Nikoonahad, Dan Wack
  • Patent number: 7133119
    Abstract: Reticle inspection systems are provided. One embodiment includes an optical subsystem configured to produce an aerial image of a reticle by simulating dose as a function of position that would be projected into a resist by an exposure system such that the aerial image is substantially equivalent to an image of the reticle that would be projected into the resist by the exposure system. Another embodiment includes an optical subsystem configured to alter one or more properties of light such as polarization transmitted by a reticle and to project the light onto a detector. An additional embodiment includes an optical subsystem configured to form an intermediate aerial image of a reticle at a numerical aperture approximately equal to a numerical aperture at which an exposure system projects an image of the reticle into a resist and to project the intermediate aerial image onto a detector.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: November 7, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Don Pettibone, Stan Stokowski
  • Patent number: 7130037
    Abstract: Various inspection and review systems for wafers or reticles are provided. One system includes an optical component configured to project light onto a specimen during inspection or review. The system also includes a liquid disposed between and in contact with surfaces of the optical component and the specimen. The liquid does not permanently alter properties of the optical component or the specimen. Preferably, the presence of the liquid between the optical component and the specimen increases the resolution of the inspection or review system. Another system includes an inspection or review subsystem configured to project light through an optical component, a liquid, and onto a specimen. The liquid contacts the optical component and the specimen. This system also includes a processing subsystem configured to remove the liquid from the specimen after inspection or review. In some embodiments, the processing subsystem is configured to clean the specimen after inspection or review.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: October 31, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Steven R. Lange
  • Patent number: 7130029
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, an adhesion characteristic and a thickness. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: October 31, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Dan Wack, Ady Levy, Kyle A. Brown, Gary Bultman, Mehrdad Nikoonahad, John Fielden
  • Patent number: 7130036
    Abstract: Methods for inspecting a wafer are provided. One method includes directing light to a center portion and an edge portion of a wafer in a single scan. The method also includes detecting light scattered from the center portion using a first detection channel and detecting light scattered from the edge portion using a second detection channel. Another method for inspecting an edge portion of a wafer includes scanning the edge portion of the wafer with light. The method also includes separately detecting different portions of light scattered from the edge portion. In addition, the method includes separating light scattered from edge features in the edge portion from other light scattered from the edge portion. The method further includes detecting defects in the edge portion of the wafer using the other scattered light.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: October 31, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Lionel Kuhlmann, Wayne McMillan
  • Patent number: 7126699
    Abstract: Systems and methods for multi-dimensional metrology and inspection of a specimen such as a bumped wafer are provided. One method includes scanning the specimen with partial oblique illumination to form an image of the structure, either through the normal collection angle or through an oblique collection angle. The method also includes integrating an intensity of the image and determining a height of the structure from the integrated intensity. The integrated intensity may be approximately proportional or inversely proportional to the height of the structure. In addition, the method may include scanning the specimen with bright field illumination to form a bright field image of the specimen. The method may also include determining a lateral dimension of the structure from the bright field image. Furthermore, the method may include detecting defects on the specimen from the bright field image or the obliquely-illuminated image.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: October 24, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Tim Wihl, Stephen Hiebert, Frank Kole, Richard Schmidley
  • Patent number: 7123356
    Abstract: Methods and systems for inspecting a reticle are provided. In an embodiment, a method may include forming an aerial image of the reticle using a set of exposure conditions. The reticle may include optical proximity correction (OPC) features. The method may also include detecting defects on the reticle by comparing the aerial image to a reference image stored in a database. The reference image may be substantially optically equivalent to an image of the reticle that would be printed on a specimen by an exposure system under the set of exposure conditions. The reference image may not include images of the OPC features. Therefore, a substantial portion of the defects include defects that would be printed onto the specimen by the exposure system using the reticle under the set of exposure conditions. The method may also include indicating the defects that are detected in critical regions of the reticle.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: October 17, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Stan Stokowski, David Alles
  • Patent number: 7110238
    Abstract: A method and a system for calibrating the work function of a non-contact voltage sensor are provided. The method includes preparing a reference sample to have a stable work function, measuring a voltage of the sample using a non-contact voltage sensor, and determining a work function correction factor of the sensor from the measured voltage. In turn, the calibrated work function may be used to adjust voltages of substrates measured by the sensor. A corona gun which includes a first electrode and one or more conductive rods is provided. In some embodiments, the conductive rods may be angled between 0 and 90 degrees with respect to a first electrode sidewall and/or be concentrically arranged less than 90 degrees from each other. In addition or alternatively, the corona gun may be adapted to alter its length and/or include a second electrode partially inset within a space surrounded by the first electrode.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: September 19, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Zhiwei (Steve) Xu, Jianou Shi, Shiyou Pei, Mahmood Mirzaaghaeian, Jeffrey A. Rzepiela
  • Patent number: 7106425
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, a presence of defects on the specimen and a thin film characteristic of the specimen. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: September 12, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Gary Bultman, Ady Levy, Kyle A. Brown, Mehrdad Nikoonahad, Dan Wack, John Fielden
  • Patent number: 7103484
    Abstract: Non-contact methods for determining a parameter of an insulating film are provided. One method includes measuring at least two surface voltages of the insulating film. The surface voltages are measured after different charge depositions. Measuring the surface voltages is performed in two or more sequences. The method also includes determining individual parameters for the two or more sequences from the surface voltages and the charge depositions. In addition, the method includes determining the parameter of the insulating film as an average of the individual parameters. The parameter is substantially independent of leakage in the insulating film. Another method includes determining a characteristic of nitrogen in an insulating film using two parameters of the insulating film selected from equivalent oxide thickness, optical thickness, and a measure of leakage through the insulating film. The characteristic may be a nitrogen dose, a nitrogen percentage, or a presence of nitrogen in the insulating film.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: September 5, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Jianou Shi, Steve Yifeng Cui, Shiyou Pei, Zhiwei (Steve) Xu, Haiyong (Howard) Wang
  • Patent number: 7092082
    Abstract: An apparatus for inspecting a semiconductor wafer includes a vertically movable chuck plate for holding said semiconductor wafer, a first light source for illuminating an area on the wafer, a main imaging camera for detecting light scattered from the surface of the wafer and a main imaging lens for imaging the illuminated area of the wafer onto the camera. The apparatus additionally includes an auto-focus system for maintaining the wafer within the depth of field of the lens focal point. The auto-focus system comprises a second light source with associated optics, a linear position sensor with associated optics for detecting light from the second light source that is reflected off the illuminated area of the wafer, circuitry for converting the light detected by the sensor into an output voltage which is proportional to the relative vertical position of the illuminated area of the wafer.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: August 15, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Victor C. Dardzinski
  • Patent number: 7075318
    Abstract: Methods for determining an electrical parameter of an insulating film are provided. One method includes measuring a surface potential of a leaky insulating film without inducing leakage across the insulating film and determining the electrical parameter from the surface potential. Another method includes applying an electrical field across the insulating film. Leakage across the insulating film caused by the electrical field is negligible. The method also includes measuring a surface potential of the specimen and determining a potential of the substrate. In addition, the method includes determining a pure voltage across the insulating film from the surface potential and the substrate potential. The method further includes determining the electrical parameter from the pure voltage. The electrical parameter may be capacitance or electrical thickness of the insulating film.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: July 11, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Xiafang (Michelle) Zhang, Zhiwei (Steve) Xu, Jianou Shi, Bao Vu, Thomas G. Miller, Gregory S. Horner
  • Patent number: 7067819
    Abstract: A system configured for measurement of a specimen is provided. The system includes an optical subsystem configured to perform measurements of the specimen. The optical subsystem includes a light source that is configured to generate light having a relatively large number of separated spectral peaks with substantially no continuous background. In some embodiments, the light may include vacuum ultraviolet light, extreme ultraviolet light, and/or soft x-rays. A carrier medium is also provided that includes program instructions executable on a computer system to analyze data generated by a detector of an optical subsystem by partitioning the data into individual peaks spaced apart across a wavelength spectrum. Partitioning the data preferably corrects for spectrum shift, drift, stretching, shrinking, or a combination thereof at the detector. The individual peaks correspond to separated spectral peaks in light generated by a light source of the optical subsystem.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: June 27, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Gary Janik
  • Patent number: 7068363
    Abstract: Systems for inspection of patterned and unpatterned wafers are provided. One system includes an illumination system configured to illuminate the specimen. The system also includes a collector configured to collect light scattered from the specimen. In addition, the system includes a segmented detector configured to separately detect different portions of the light such that azimuthal and polar angular information about the different portions of light is preserved. The detector may also be configured to produce signals representative of the different portions of the light. The system may also include a processor configured to detect defects on the specimen from the signals. In another embodiment, the system may include a stage that is configured to rotate and translate the specimen. In one such embodiment, the system may also include an illumination system configured to scan the specimen in a wide scan path during rotation and translation of the specimen.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 27, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Christopher F. Bevis, Mike Kirk, Mehdi Vaez-Iravani
  • Patent number: 7064565
    Abstract: Methods for determining a surface voltage of an insulating film are provided. One method includes depositing a charge on an upper surface of the insulating film and measuring a current to the wafer during deposition. The method also includes determining the surface voltage of the insulating film from the current. In this manner, the surface voltage is not measured, but is determined from a measured current. Another embodiment may include measuring a second current to the wafer during a high current mode deposition of a charge on the film and determining a second surface voltage of the film from the second current. This method may be repeated until a Q-V sweep is measured. An additional embodiment may include altering a control voltage during deposition of the charge such that a current to the wafer is substantially constant over time and determining charge vs. voltage data for the insulating film.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: June 20, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Zhiwei Xu, Thomas G. Miller, Jianou Shi, Gregory S. Horner
  • Patent number: 7052369
    Abstract: Systems and methods for detecting a presence of blobs on a specimen are provided. One method may include scanning measurement spots across a specimen during polishing of the specimen. The method may also include determining if the blobs are present on the specimen at the measurement spots. Each of the blobs may include unwanted material disposed upon a contiguous portion of the measurement spots. In some instances, the blobs may include copper. In some embodiments, scanning the measurement spots may include measuring an optical property and/or an electrical property of the specimen at the measurement spots. Another embodiment includes dynamically determining a signal threshold distinguishing a presence of the blobs from an absence of the blobs. An additional embodiment includes determining an endpoint of polishing if, for example, blobs are not determined to be present on the specimen.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: May 30, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 7030018
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: April 18, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng