Patents Assigned to Kurimoto, Ltd.
  • Patent number: 9424969
    Abstract: A magneto-rheological fluid includes a magnetic particle mixture, and a dispersion medium for dispersing the magnetic particle mixture. The magnetic particle mixture contains the first magnetic particles and the second magnetic particles. The first magnetic particles have an average particle diameter of 1 ?m or more and 30 ?m or less. The second magnetic particles are particles of a soft magnetic material, and have an average particle diameter of 50 nm or more and 200 nm or less. A ratio of the second magnetic particles in the magnetic particle mixture is 10% by mass or more and 40% by mass or less.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: August 23, 2016
    Assignee: Kurimoto, Ltd.
    Inventors: Junichi Noma, Masami Nakano
  • Patent number: 9123462
    Abstract: A magneto-rheological fluid includes: a magnetic particle mixture; and a dispersion medium in which the magnetic particle mixture is dispersed. The magnetic particle mixture includes first magnetic particles and second magnetic particles. The first magnetic particles have an average particle size greater than or equal to 1 ?m and less than or equal to 50 ?m. The second magnetic particles have an average particle size greater than or equal to 20 nm and less than or equal to 200 nm, and have surfaces provided with a surface modified layer. A proportion of the second magnetic particles in the magnetic particle mixture is greater than or equal to 2 wt % and less than or equal to 10 wt %.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: September 1, 2015
    Assignee: KURIMOTO, LTD.
    Inventors: Yuya Ueshima, Shuichi Akaiwa, Junichi Noma
  • Patent number: 9044823
    Abstract: A plurality of short light metal billets obtained by pressing light metal pieces are stacked in a long container having an inside diameter D that is larger than an outside diameter d of each of the short light metal billets, are pressed in the long container at a temperature higher than room temperature, and are compressed until the outside diameter d of each of the short light metal billets becomes equal to the inside diameter D of the long container, thereby joining the short light metal billets together at an interface between each adjacent pair of the short light metal billets by friction.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 2, 2015
    Assignee: Kurimoto, Ltd.
    Inventors: Akihiko Koshi, Jinsun Liao
  • Patent number: 8906129
    Abstract: A copper alloy having excellent sliding performance is produced without relying on lead or molybdenum. The copper alloy contains a sintered Cu5FeS4 material produced by sintering a raw material powder that comprises Cu, Fe and S and is produced by a gas atomizing method.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: December 9, 2014
    Assignee: Kurimoto, Ltd.
    Inventors: Tomohiro Sato, Yoshimasa Hirai, Toru Maruyama, Takeshi Kobayashi
  • Publication number: 20140234017
    Abstract: A plurality of short light metal billets 1 obtained by pressing light metal pieces are stacked in a long container 2 having an inside diameter D that is larger than an outside diameter d of each of the short light metal billets 1, are pressed in the long container 2 at a temperature higher than room temperature, and are compressed until the outside diameter d of each of the short light metal billets 1 becomes equal to the inside diameter D of the long container 2, thereby joining the short light metal billets 1 together at an interface 4 between each adjacent pair of the short light metal billets 1 by friction.
    Type: Application
    Filed: June 25, 2012
    Publication date: August 21, 2014
    Applicant: KURIMOTO, LTD.
    Inventors: Akihiko Koshi, Jinsun Liao
  • Publication number: 20130341145
    Abstract: A magneto-rheological fluid includes: a magnetic particle mixture; and a dispersion medium in which the magnetic particle mixture is dispersed. The magnetic particle mixture includes first magnetic particles and second magnetic particles. The first magnetic particles have an average particle size greater than or equal to 1 ?m and less than or equal to 50 ?m. The second magnetic particles have an average particle size greater than or equal to 20 nm and less than or equal to 200 nm, and have surfaces provided with a surface modified layer. A proportion of the second magnetic particles in the magnetic particle mixture is greater than or equal to 2 wt % and less than or equal to 10 wt %.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: Kurimoto, Ltd.
    Inventors: Yuya Ueshima, Shuichi Akaiwa, Junichi Noma
  • Patent number: 8178067
    Abstract: A production method of amorphous silicon oxide powder comprises a step of preparing a wood, agricultural crop or plant containing hexose and/or pentose and silicon oxide as a starting raw material, a step of hydrolyzing the starting raw material with nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid or organic acid to reduce a content of the hexose to 10% by weight or less and/or a content of the pentose to 20% by weight or less, and a step of burning residue yielded in the hydrolyzing step at a temperature of 400° C. to 1200° C.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: May 15, 2012
    Assignee: Kurimoto, Ltd.
    Inventors: Katsuyoshi Kondoh, Yoshisada Michiura
  • Patent number: 7998448
    Abstract: A production method of amorphous silica comprises a step of preparing organic waste containing silicon oxide as a starting material, a step of immersing the organic waste in a carboxylic acid aqueous solution having a hydroxyl group, a step of washing the organic waste in water, and a step of heating the organic waste in the air atmosphere.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: August 16, 2011
    Assignees: Kurimoto, Ltd.
    Inventors: Katsuyoshi Kondoh, Yoshisada Michiura, Junko Umeda
  • Publication number: 20110150694
    Abstract: A Ti particle-dispersed magnesium-based composite material is a material having titanium particles uniformly dispersed in a magnesium matrix. Magnesium that forms the matrix and titanium particles are bonded together,) with satisfactory wettability without titanium oxide at an interface therebetween. The Ti particle-dispersed magnesium-based composite material has a tensile strength of 230 MPa or more.
    Type: Application
    Filed: March 16, 2009
    Publication date: June 23, 2011
    Applicant: Kurimoto Ltd.
    Inventors: Katsuyoshi Kondoh, Kantaro Kaneko
  • Publication number: 20110142710
    Abstract: A Ti particle-dispersed magnesium-based composite material is a material having titanium particles uniformly dispersed in a magnesium matrix, and is characterized by having a titanium-aluminum compound layer at an interface between the magnesium alloy matrix and the titanium particles dispersed in the magnesium alloy matrix.
    Type: Application
    Filed: March 16, 2009
    Publication date: June 16, 2011
    Applicant: KURIMOTO LTD.
    Inventors: Katsuyoshi Kondoh, Kantaro Kaneko
  • Publication number: 20110089272
    Abstract: A method for manufacturing a magnesium alloy material includes the steps of: preparing a sheet or block of starting material that is made of a magnesium alloy; subjecting the starting material to a plastic working process at a temperature of 250° C. or less and a reduction ratio of 70% or more to introduce strain without causing dynamic recrystallization; pulverizing the material subjected to said plastic working process into powder; compressively deforming said powder by passing said powder between a pair of rotating rolls; and successively crushing the compressively deformed powder, which has passed between the pair of rotating rolls, into granular powder.
    Type: Application
    Filed: December 5, 2008
    Publication date: April 21, 2011
    Applicants: Katsuyoshi, KURIMOTO, LTD.
    Inventors: Katsuyoshi Kondoh, Makoto Hotta, Jinsun Liao, Kantaro Kaneko, Norio Fujii, Hirohito Kametani, Akihiko Koshi
  • Patent number: 7909948
    Abstract: When starting raw material powder is passed through a pair of rolls (2a), plastic working is applied to the starting raw material powder, and the crystal grain diameter of a metal or alloy constituting a matrix of the powder particle after processed is miniaturized. According to the thus provided alloy powder raw material, the maximum size of the powder particle is not more than 10 mm and the minimum size of the powder particle is not less than 0.1 mm, and the maximum crystal grain diameter of the metal or alloy constituting the matrix of the powder particle is not more than 30 ?m.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: March 22, 2011
    Assignees: Gohsyu Co., Ltd., Kurimoto, Ltd.
    Inventors: Katsuyoshi Kondoh, Mitsuhiro Goto, Hideaki Fukui, Shuji Shiozaki, Hajime Agata, Katsuhito Itakura, Kazunori Fukumoto
  • Patent number: 7819992
    Abstract: A member for water works is proposed in which the content of lead is limited to a very small values while maintaining its mechanical properties, castability, machinability, pressure resistance, etc. to levels equivalent to those of conventional copper alloys containing lead. A copper alloy is produced which contains not less than 2.0% by weight and not more than 5.9% by weight of tin, not less than 1.5% by weight and not more than 5.0% by weight of nickel, not less than 5.0% by weight and not more than 12.1% by weight of zinc, not less than 0.4% by weight and not more than 3.3% by weight of bismuth, and not less than 0.009% by weight and not more than 0.15% by weight of phosphorus, the balance being copper and impurities.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: October 26, 2010
    Assignee: Kurimoto, Ltd.
    Inventors: Masaaki Yamamoto, Yoshimasa Hirai, Hiroaki Maedono, Chizuko Maedono, legal representative
  • Publication number: 20100166593
    Abstract: A production method of an extrusion billet includes a step of preparing a plate or lump starting material comprising a magnesium alloy, a step of performing a plastic deformation process at a rolling reduction of 70% or more to the starting material at a temperature of 250° C. or lower to introduce a strain without generating dynamic recrystallization, a step of producing powder by granulating the material after the plastic deformation process, and a step of producing a powder billet by compressing the powder.
    Type: Application
    Filed: June 19, 2008
    Publication date: July 1, 2010
    Applicant: KURIMOTO, LTD.
    Inventors: Katsuyoshi Kondoh, Makoto Hotta, Jinsun Liao, Kantaro Kaneko, Norio Fujii, Hirohito Kametani, Akihiko Koshi
  • Publication number: 20090304800
    Abstract: An object of the present invention is to provide a dry coating process that can produce a dry-coated preparation in a large amount. A large amount of dry-coated preparation can be produced more efficiently, than by prior-art processes, by a process in which a material containing core particles and a dry binder (lauric acid, myristic acid, or the like) is kneaded in a twin-screw kneader to produce dry binder particles in which the surfaces of the core particles are dry-coated with the dry binder. Further, a dry coating particle production process in which a material containing core particles, a dry binder, and a coating powder is kneaded in a twin-screw kneader can also produce a large amount of dry-coated preparation more efficiently than prior-art processes.
    Type: Application
    Filed: October 12, 2006
    Publication date: December 10, 2009
    Applicant: KURIMOTO, LTD.
    Inventors: Shinji Fujimoto, Toshinobu Uemura, Kantaro Kaneko, Yoshinobu Fukumori
  • Publication number: 20090263268
    Abstract: A raw magnesium alloy powder material having a relatively small crystal grain diameter is obtained by subjecting a starting material powder having a relatively large crystal grain diameter to a plastic working in which the powder is passed through a pair of rolls to undergo compressive deformation or shear deformation. The starting material powder is a magnesium alloy powder having a fine intermetallic compound (21) precipitated and dispersed in a base (22) by a heat treatment. A work strain (22) is formed around the precipitated intermetallic compound (21) in the magnesium alloy powder after processed by the plastic working. The magnesium alloy powder after processed by the plastic working has a maximum size of 10 mm or less and a minimum size of 0.1 mm or more, and the magnesium particle constituting the base (20) has a maximum crystal grain diameter of 20 ?m or less.
    Type: Application
    Filed: June 14, 2006
    Publication date: October 22, 2009
    Applicants: GOHSYU CO., LTD., KURIMOTO, LTD.
    Inventors: Katsuyoshi Kondoh, Mitsuhiro Goto, Hideaki Fukui, Kantaro Kaneko, Shuji Shiozaki, Katsuhito Itakura
  • Publication number: 20080286142
    Abstract: A member for water works is proposed in which the content of lead is limited to a very small values while maintaining its mechanical properties, castability, machinability, pressure resistance, etc. to levels equivalent to those of conventional copper alloys containing lead. A copper alloy is produced which contains not less than 2.0% by weight and not more than 5.9% by weight of tin, not less than 1.5% by weight and not more than 5.0% by weight of nickel, not less than 5.0% by weight and not more than 12.1% by weight of zinc, not less than 0.4% by weight and not more than 3.3% by weight of bismuth, and not less than 0.009% by weight and not more than 0.15% by weight of phosphorus, the balance being copper and impurities.
    Type: Application
    Filed: June 20, 2006
    Publication date: November 20, 2008
    Applicant: KURIMOTO, LTD.
    Inventors: Masaaki Yamamoto, Yoshimasa Hirai, Hiroaki Maedono, Chizuko Maedono
  • Patent number: 7160607
    Abstract: A damping structure which dispenses of the connection of a resistor used for a conventional damping structure and undergoes diverse molding processings with a simpler structure, and a laminate damping base material constituting such a damping structure. A laminate damping base material made of a piezoelectric ceramic material or piezoelectric polymer material and a conductive fiber-reinforced plastic (FRP) composition is prepared. One to a plurality of this base material are stacked to constitute a first damping structure. A second damping structure is constituted by stacking at least a layer of piezoelectric polymer film or piezoelectric ceramic thin film between a multilayer laminate that is a laminate of conductive laminate FRP base materials.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: January 9, 2007
    Assignee: Kurimoto, Ltd.
    Inventor: Toshio Tanimoto
  • Patent number: 7040127
    Abstract: A method and a device are proposed which accurately and efficiently form a pipe with a bending machine only, without using any correcting devices. A plate having holes is fed into a bending machine in which under an upper roll, lower rolls parallel thereto are arranged, and a pipe is formed during a rough forming step and a fine forming step. In the rough forming step, bending is performed so that the plate will have a required diameter at hole portions. In the fine forming step, the hole portions are not pressed for bending while other portions are rolled so as to become closer to a required diameter to form the pipe.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: May 9, 2006
    Assignee: Kurimoto, Ltd.
    Inventor: Takashi Kudo
  • Publication number: 20040166267
    Abstract: The pipe of the present invention comprises an ethylene base polymer comprising ethylene and an &agr;-olefin having 3 to 20 carbon atoms, wherein (A) a maximum value of the residual stress is 0.13 MPa or less; (B) the crystallinity is 0.630 to 0.850; (C) a gradient of the crystallinity against a thickness of the pipe is 0.465 or less; and (D) the pipe has a thickness of 5 to 50 mm. It is excellent in a durability, a rigidity and an impact resistance and suited to uses for large diameter pipes receiving a high internal pressure.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 26, 2004
    Applicants: Idemitsu Petrochemical Co., Ltd., Kurimoto, Ltd.
    Inventors: Katsutoshi Ohta, Shigeru Murakami, Ryouichi Nakano