Abstract: Methods for forming a protective polymeric coating on a silicon or silicon-carbide electrode of a plasma processing chamber are provided. The polymeric coating provides protection to the underlying surface of the electrode with respect to exposure to constituents of plasma and gaseous reactants. The methods can be performed during a process of cleaning the chamber, or during a process for etching a semiconductor substrate in the chamber.
Type:
Grant
Filed:
October 29, 2004
Date of Patent:
June 5, 2007
Assignee:
Lam Research Corporation
Inventors:
Kenji Takeshita, Tsuyoshi Aso, Seiji Kawaguchi, Thomas McClard, Wan-Lin Chen, Enrico Magni, Michael Kelly, Michelle Lupan, Robert Hefty
Abstract: A substrate holding apparatus is provided. The substrate holding apparatus includes a chuck yoke, a plurality of arm assemblies, and a plurality of gripper assemblies. A first end of each of the arm assemblies is connected to the chuck yoke and each of the arm assemblies has a spring. A second end of each of the arm assemblies is connected to a respective one of the plurality of grippers. The chuck yoke is capable of rotating so as to move each of the plurality of arm assemblies and respective plurality of gripper assemblies into either a closed position or an open position. A compression force from each of the springs is applied to a substrate when the grippers are moved to the closed position.
Type:
Grant
Filed:
June 30, 2003
Date of Patent:
June 5, 2007
Assignee:
Lam Research Corporation
Inventors:
Gregory R. Bettencourt, Anthony de la Llera, Xuyen N. Pham
Abstract: An apparatus and a method is provided for using high-frequency acoustic energy with a supercritical fluid to perform a semiconductor wafer (“wafer”) cleaning process. High-frequency acoustic energy is applied to the supercritical fluid to impart energy to particulate contamination present on the wafer surface. Energy imparted to particulate contamination via the high-frequency acoustic energy and supercritical fluid is used to dislodge and remove the particulate contamination from the wafer. Additionally, the wafer cleaning process benefits from the supercritical fluid properties of near zero surface tension, high diffusivity, high density, and chemical mixing capability.
Abstract: A method for adjusting a data set defining a set of process runs, each process run having a set of data corresponding to a set of variables for a wafer processing operation is provided. A model derived from a data set is received. A new data set corresponding to one process run is received. The new data set is projected to the model. An outlier data point produced as a result of the projecting is identified. A variable corresponding to the one outlier data point is identified, the identified variable exhibiting a high contribution. A value for the variable from the new data set is identified. Whether the value for the variable is unimportant is determined. A normalized matrix of data is created, using random data and the variable that was determined to be unimportant from each of the new data set and the data set. The data set is updated with the normalized matrix of data.
Abstract: An apparatus and method is provided for positioning and utilizing a Faraday shield in direct exposure to a plasma within an inductively coupled plasma etching apparatus. Broadly speaking, the Faraday shield configuration maintains a condition of an etching chamber window. At a minimum, positioning the Faraday shield between the window and the plasma prevents erosion of the window resulting from plasma sputter and shunts heat generated by an etching process away from the window.
Abstract: Yttria-coated ceramic components of semiconductor material processing apparatuses include a substrate and at least one yttria-containing coating on the substrate. The components are made by applying a first yttria-containing coating on a ceramic substrate, which can be a green body of the ceramic material. The coated green body is sintered. The first yttria-containing coating can be treated to remove attached yttria particles resulting from the sintering. In another embodiment, a second yttria-containing coating can be thermally sprayed on the first yttria-containing coating to cover the particles.
Abstract: A method for removing a substrate that is attached to a bipolar electrostatic chuck (ESC) by application of a bipolar ESC voltage is provided which includes discontinuing the bipolar ESC voltage after processing a current substrate, and determining a monopolar component error of the processing. The method also includes correcting the monopolar component error for a subsequent substrate.
Abstract: A system and method for forming a semiconductor in a dual damascene structure including receiving a patterned semiconductor substrate. The semiconductor substrate having a first conductive interconnect material filling multiple features in the pattern. The first conductive interconnect material having an overburden portion. The over burden portion is planarized. The over burden portion is substantially entirely removed in the planarizing process. A mask layer is reduced and a subsequent dielectric layer is formed on the planarized over burden portion. A mask is formed on the subsequent dielectric layer. One or more features are formed in the subsequent dielectric layer and the features are filled with a second conductive interconnect material.
Type:
Grant
Filed:
January 30, 2004
Date of Patent:
May 15, 2007
Assignee:
LAM Research Corporation
Inventors:
Andrew D. Bailey, III, Shrikant P. Lohokare
Abstract: A method for forming features in dielectric layers and opening barrier layers for a plurality of wafers and cleaning an etch chamber after processing and removing each wafer of the plurality of wafers is provided. A wafer of the plurality of wafers is placed into the etch chamber wherein the wafer has a barrier layer over the wafer and a dielectric layer over the barrier layer. The dielectric layer is etched. The barrier layer is opened. The wafer is removed from the etch chamber. A waferless automatic cleaning of the etch chamber without the wafer is provided. The waferless automatic cleaning comprises providing a waferless automatic cleaning gas comprising oxygen and nitrogen to the etch chamber and forming a waferless automatic cleaning plasma from the waferless automatic cleaning gas to clean the etch chamber.
Type:
Grant
Filed:
April 19, 2004
Date of Patent:
May 1, 2007
Assignee:
Lam Research Corporation
Inventors:
Xiaoqiang Sean Yao, Bi-Ming Yen, Taejoon Han, Peter Loewenhardt
Abstract: Wafer area pressure rings used to confine plasma in plasma processing chambers which are manufactured with bores therein such that replacement of the pressure rings during routine or repair maintenance is significantly eased. The bores allows the pressure rings to be installed by simply aligning the bores under hanging adapters which are connected to the ceiling of the chamber, lifting the rings such that the hanging adapters enter the ring, turning or twisting the entire apparatus a miniscule amount, and then lowering the ring apparatus on the hanging apparatus, thereby locking the rings in place.
Abstract: A method of forming conductive connections for semiconductor devices is provided. An organic low-k dielectric layer is formed over a wafer. A conductive aluminum containing layer is formed over the organic low-k dielectric layer. The wafer is placed in an etch chamber. An etch gas comprising HBr is provided into the etch chamber. A plasma is formed from the etch gas comprising HBr. The plasma from the etch gas comprising HBr is used to selectively etch the conductive aluminum containing layer with respect to the low-k dielectric layer.
Abstract: Cleaning compounds, apparatus, and methods to remove contaminants from a substrate surface are provided. An exemplary cleaning compound to remove particulate contaminants from a semiconductor substrate surface is provided. The cleaning compound includes a viscous liquid with a viscosity between about 1 cP to about 10,000 cP. The cleaning compound also includes a plurality of solid components dispersed in the viscous liquid, the plurality of solid components interact with the particulate contaminants on the substrate surface to remove the particulate contaminants from the substrate surface.
Type:
Application
Filed:
September 11, 2006
Publication date:
April 19, 2007
Applicant:
Lam Research Corporation
Inventors:
Mikhail Korolik, Erik Freer, John de Larios, Katrina Mikhaylichenko, Mike Ravkin, Fritz Redeker
Abstract: An electrostatic chuck (“chuck”) is provided for controlling a radial temperature profile across a substrate when exposed to a plasma. The chuck includes a number of independently controllable gas volumes that are each defined in a radial configuration relative to a top surface of the chuck upon which the substrate is to be supported. The chuck includes a support member and a base plate. The base plate positioned beneath and in a spaced apart relationship from the support member. The gas volumes are defined between the base plate and the support member, with separation provided by annularly-shaped thermally insulating dividers. Each gas volume can include a heat generation source. A gas pressure and heat generation within each gas volume can be controlled to influence thermal conduction through the chuck such that a prescribed radial temperature profile is achieved across the substrate.
Abstract: A method for processing recess etch operations in substrates is provided including forming a hard mask over the substrate and etching a trench in the substrate using the hard mask, and forming a dielectric layer over the hard mask and in the trench, where the dielectric layer lines the trench. A conductive material is then applied over the dielectric layer such that a blanket of the conductive material lies over the hard mask and fills the trench, and the conductive material is etched to substantially planarize the conductive material. The etching of the conductive material triggers an endpoint just before all of the conductive material is removed from over the dielectric layer that overlies the bard mask. The conductive material is recess etched to remove the conductive material over the dielectric layer that overlies the hard mask and removes at least part of the conductive material from within the trench.
Type:
Grant
Filed:
October 31, 2001
Date of Patent:
April 17, 2007
Assignee:
Lam Research Corporation
Inventors:
Linda Braly, Vahid Vahedi, Erik Edelberg, Alan Miller
Abstract: A method for minimizing measuring spot size and noise during film thickness measurement is provided. The method initiates with locating a first eddy current sensor directed toward a first surface associated with a conductive film. The method includes locating a second eddy current sensor directed toward a second surface associated with the conductive film. The first and second eddy current sensors may share a common axis or be offset from each other. The method further includes alternating power supplied to the first eddy current sensor and the second eddy current sensor, such that the first eddy current sensor and the second eddy current sensor are powered one at a time. In one aspect of the invention, a delay time is incorporated between switching power between the first eddy current sensor and the second eddy current sensor. The method also includes calculating the film thickness measurement based on a combination of signals from the first eddy current sensor and the second eddy current sensor.
Type:
Grant
Filed:
December 30, 2003
Date of Patent:
April 17, 2007
Assignee:
Lam Research Corporation
Inventors:
Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, Charles Freund
Abstract: A method for etching a trench is provided. The method initiates with providing a substrate having a patterned feature. The method includes alternating between deposition of a protective layer onto inner surfaces of the patterned feature and etching the trench into the substrate. The alternating may be achieved through a gas modulation technique and in one embodiment, the deposition and the etching are performed in the same chamber, i.e., the substrate does not move to a different chamber between the etch and deposition processes. The alternating is continued until the trench is completed and then the trench is filled. A semiconductor processing system is also provided.
Abstract: A vacuum plasma processor includes an electrode array with plural mutually-insulated electrodes forming a bottom or top electrode of the plasma processor. When the electrode array is part of the bottom electrode, the electrodes of the array are parts of a thermoelectric, Peltier effect arrangement responsive to localized temperature sensors and are parts of an electrostatic chuck. The thermoelectric arrangement controls localized temperature of workpieces and the chucking voltages indicate workpiece position relative to a workpiece holder including the electrodes. The electrodes of the arrays are coupled to circuitry for determining and/or controlling at least one localized plasma electric parameter at different locations of a workpiece and/or the plasma. The circuitry simultaneously supplies RF power having differing frequencies and/or power levels to different electrodes of the arrays and includes separate matching networks connected to the different electrodes of the array.
Abstract: A semiconductor processing chamber having a silicon containing pre-coat is provided. The chamber includes a top electrode in communication with a power supply and a processing chamber defined within a base, a sidewall extending from the base, and a top disposed on the sidewall. The processing chamber has an outlet enabling removal of fluids within the processing chamber and includes a substrate support where an outer surface of the substrate support coated with the removable silicon containing coating, wherein the silicon containing coating is a compound consisting essentially of silicon and one of bromine and chlorine. The chamber includes an inner surface defined by the base, the sidewall and the top, where the inner surface is coated with a removable silicon containing coating.
Type:
Grant
Filed:
June 25, 2003
Date of Patent:
April 17, 2007
Assignee:
Lam Research Corporation
Inventors:
Harmeet Singh, Saurabh J. Ullal, Shibu Gangadharan
Abstract: A method for measuring a metal film thickness is provided. The method initiates with heating a region of interest of a metal film with a defined amount of heat energy. Then, a temperature of the metal film is measured. Next, a thickness of the metal film is calculated based upon the temperature and the defined amount of heat energy. A chemical mechanical planarization system capable of detecting a thin metal film through the detection of heat transfer dynamics is also provided.
Abstract: A cleaning material is disposed over a substrate. The cleaning material includes solid components dispersed within a liquid medium. A force is applied to the solid components within the liquid medium to bring the solid components within proximity to contaminants present on the substrate. The force applied to the solid components can be exerted by an immiscible component within the liquid medium. When the solid components are brought within sufficient proximity to the contaminants, an interaction is established between the solid components and the contaminants. Then, the solid components are moved away from the substrate such that the contaminants having interacted with the solid components are removed from the substrate.
Type:
Application
Filed:
January 20, 2006
Publication date:
April 12, 2007
Applicant:
Lam Research Corporation
Inventors:
Erik Freer, John de Larios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred Redeker, Clint Thomas, John Parks