Patents Assigned to Laser Systems, Inc.
  • Patent number: 10734857
    Abstract: An electromechanical rotary actuator includes a stator having teeth extending inwardly from an inner wall surface, wherein free ends of each tooth form an aperture dimensioned for receiving a rotor, the free ends forming a gap therebetween. A segmented set of electrical coils extends around each tooth, wherein each coil of the segmented set has a thickness sufficient for passing through the gap between the first and second teeth. Electrically insulating tabs extend into an opening around each tooth carrying the segmented set of coils. The tabs maintain each of the coils within the segmented set in a spaced relation to the stator. When fabricating the actuator, each of the coils are fabricated and individually placed around a tooth with each coil having a thickness and breadth for optimally packing the stator.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 4, 2020
    Assignee: Pangolin Laser Systems, Inc.
    Inventor: William R. Benner, Jr.
  • Publication number: 20200107724
    Abstract: A photomedical system and method for treating and/or diagnosing a patient's eye that includes a first light source for producing light, a scanning device for deflecting the light to produce a pattern of the light on the eye, a viewing element positioned to view the eye by a user or physician, and an alignment element aligned to the viewing element and the scanning device for optically indicating through the viewing element a location on the eye on which the pattern of the light will be located, but without projecting any alignment light onto the eye.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 9, 2020
    Applicant: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventors: Michael W. WILTBERGER, Dan E. ANDERSEN, David H. MORDAUNT
  • Patent number: 10603215
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: March 31, 2020
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: Daniel V. Palanker, Dan E. Andersen
  • Publication number: 20200096714
    Abstract: An optical switch incorporated in a photomedical system, and a method of treating tissue using the optical switch for creating pulsed light. A light source generates an optical beam. An aperture element includes a light-transmitting portion and a light-blocking portion. An optical element such as a mirror, prism or lens directs the optical beam to the aperture element, wherein the optical element is movable for translating the optical beam across the light-transmitting and light-blocking portions of the aperture element, or changing its angle of incidence through the aperture to produce one or more pulses of light from the optical beam. A lens focuses the one or more pulses of the optical beam onto target tissue. A controller controls the movement of the optical element to produce the one or more pulses of light.
    Type: Application
    Filed: October 16, 2019
    Publication date: March 26, 2020
    Applicant: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventors: Michael W. Wiltberger, Dan E. Andersen, David H. Mordaunt
  • Patent number: 10539433
    Abstract: A position sensor employing silicon photodiodes formed from trapezoidal chips mounted on a printed circuit board detects angular positions of a rotor shaft within a galvanometer-based optical scanner.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: January 21, 2020
    Assignee: Pangolin Laser Systems, Inc.
    Inventors: William R. Benner, Jr., Ryan Smith, Ante Uglesic
  • Patent number: 10524656
    Abstract: A photomedical system and method for treating and/or diagnosing a patient's eye that includes a first light source for producing light, a scanning device for deflecting the light to produce a pattern of the light on the eye, a viewing element positioned to view the eye by a user or physician, and an alignment element aligned to the viewing element and the scanning device for optically indicating through the viewing element a location on the eye on which the pattern of the light will be located, but without projecting any alignment light onto the eye.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 7, 2020
    Assignee: TOPCON MEDICAL LASER SYSTEMS INC.
    Inventors: Michael W. Wiltberger, Dan E. Andersen, David H. Mordaunt
  • Patent number: 10488606
    Abstract: An optical switch incorporated in a photomedical system, and a method of treating tissue using the optical switch for creating pulsed light. A light source generates an optical beam. An aperture element includes a light-transmitting portion and a light-blocking portion. An optical element such as a mirror, prism or lens directs the optical beam to the aperture element, wherein the optical element is movable for translating the optical beam across the light-transmitting and light-blocking portions of the aperture element, or changing its angle of incidence through the aperture to produce one or more pulses of light from the optical beam. A lens focuses the one or more pulses of the optical beam onto target tissue. A controller controls the movement of the optical element to produce the one or more pulses of light.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: November 26, 2019
    Assignee: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventors: Michael W. Wiltberger, Dan E. Andersen, David H. Mordaunt
  • Patent number: 10456875
    Abstract: Embodiments of methods and systems for distributing laser energy are disclosed herein. A system for dispensing laser energy by one or more laser energy sources in accordance with one embodiment of the present technology includes a laser energy credit transferring component configured to communicate with a laser energy source. The laser energy source is configured for producing and dispensing laser energy. The laser energy credit transferring component is further configured to receive a request from the laser energy source for laser energy and transfer laser energy credits to the laser energy source. The laser energy credits enable the laser energy source to dispense a corresponding amount of laser energy.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: October 29, 2019
    Assignee: UNIVERSAL LASER SYSTEMS, INC.
    Inventors: Yefim P. Sukhman, Michael L. Flanary, Stefano J. Noto, Christian J. Risser, Miesha T. Stoute, David John Zirbel, Jr.
  • Patent number: 10398599
    Abstract: An ophthalmic treatment system and method for performing therapy on target tissue in a patient's eye. A delivery system delivers treatment light to the patient's eye and a camera captures a live image of the patient's eye. Control electronics control the delivery system, register a pre-treatment image of the patient's eye to the camera's live image (where the pre-treatment image includes a treatment template that identifies target tissue within the patient's eye), and verify whether or not the delivery system is aligned to the target tissue defined by the treatment template. The control electronics control the delivery system to project the treatment light onto the patient's eye in response to both an activation of a trigger device and the verification that the delivery system is aligned to the target tissue, as well as adjust delivery system alignment to track eye movement.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: September 3, 2019
    Assignee: TOPCON MEDICAL LASER SYSTEMS INC.
    Inventor: Steven Thomas Charles
  • Patent number: 10391345
    Abstract: Embodiments of laser material processing systems with fire suppression are disclosed herein. A laser material processing system configured in accordance with one embodiment includes a laser material processing region, at least one sensor disposed in the laser material processing region, and at least one suppressant delivery port positioned in or adjacent to the laser material processing region. The sensor is configured to detect the presence of self-sustained combustion in the laser material processing region, and a suppressant delivery port is configured to deliver suppressant to suppress the self-sustained combustion when at least one of the sensors detects self-sustained combustion.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 27, 2019
    Assignee: UNIVERSAL LASER SYSTEMS, INC.
    Inventors: Yefim P. Sukhman, Stefano J. Noto, Christian J. Risser, Matthew R. Ricketts
  • Publication number: 20190224043
    Abstract: An ophthalmic illumination method and system with a head-up display imaging system is provided wherein a therapeutic light is generated by a first laser light source configured to generate therapeutic light and a near-infrared wavelength of an alignment pattern is generated by a second laser light source, where the therapeutic light is directed upon an eye to be examined or treated in accordance with the alignment pattern.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 25, 2019
    Applicant: Topcon Medical Laser Systems Inc.
    Inventor: Chris Sramek
  • Patent number: 10284038
    Abstract: An electromechanical rotary actuator includes a stator having teeth extending inwardly from an inner wall surface, wherein free ends of each tooth form an aperture dimensioned for receiving a rotor, the free ends forming a gap therebetween. A segmented set of electrical coils extends around each tooth, wherein each coil of the segmented set has a thickness sufficient for passing through the gap between the first and second teeth. Electrically insulating tabs extend into an opening around each tooth carrying the segmented set of coils. The tabs maintain each of the coils within the segmented set in a spaced relation to the stator. When fabricating the actuator, each of the coils are fabricated and individually placed around a tooth with each coil having a thickness and breadth for optimally packing the stator.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: May 7, 2019
    Assignee: Pangolin Laser Systems, Inc.
    Inventor: William R. Benner, Jr.
  • Publication number: 20190117462
    Abstract: System and method for generating patterns P of aiming and treatment light on target eye tissue (e.g. the retina) of a patient's eye. The system includes light sources for treatment and aiming light, a scanner for generating patterns of spots of the generated light, a controller, and a graphic user interface that allows the user to select one of several possible spot patterns, adjust the spot density and/or spot size, and apply patterns with fixed or varied density. The patterns can be formed of interlaced sub-patterns and/or scanned without adjacent spots being consecutively formed to reduce localized heating. Partially or fully enclosed exclusion zones within the patterns protect sensitive target tissue from exposure to the light.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 25, 2019
    Applicant: Topcon Medical Laser Systems, Inc.
    Inventors: David Haydn MORDAUNT, George MARCELLINO, Michael W. WILTBERGER, Justin HENDRICKSON, Katrina BELL, Dan E. ANDERSEN
  • Publication number: 20190046352
    Abstract: A system and method for treating target tissue including a light source for generating a beam of light, a plurality of optical fibers, a deflection device configured to selectively deflect the light beam into the input ends of the optical fibers, one optical fiber input end at a time, and a probe having a tip with the output ends of the optical fibers and configured for insertion into target tissue. The probe tip is configured to sequentially project spaced apart spots of the light beam from the output ends as the deflection device deflects the light beam into the optical fibers. One or more moving or static deflecting optics at the probe tip can be used to statically or dynamically deflect the beam exiting the optical fibers.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Applicant: TOPCON MEDICAL LASER SYSTEMS INC.
    Inventors: David H. MORDAUNT, Dan E. ANDERSEN
  • Patent number: 10179071
    Abstract: System and method for generating patterns P of aiming and treatment light on target eye tissue (e.g. the retina) of a patient's eye. The system includes light sources for treatment and aiming light, a scanner for generating patterns of spots of the generated light, a controller, and a graphic user interface that allows the user to select one of several possible spot patterns, adjust the spot density and/or spot size, and apply patterns with fixed or varied density. The patterns can be formed of interlaced sub-patterns and/or scanned without adjacent spots being consecutively formed to reduce localized heating. Partially or fully enclosed exclusion zones within the patterns protect sensitive target tissue from exposure to the light.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: January 15, 2019
    Assignee: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventors: David Haydn Mordaunt, George Marcellino, Michael W. Wiltberger, Justin Hendrickson, Katrina Bell, Dan E. Andersen
  • Publication number: 20180344527
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Application
    Filed: July 20, 2018
    Publication date: December 6, 2018
    Applicant: Topcon Medical Laser Systems, Inc.
    Inventors: Daniel V. PALANKER, Dan E. ANDERSEN
  • Patent number: 10141712
    Abstract: A method for adjusting an optical cavity's length includes: measuring a first absolute frequency corresponding to a cavity mode, the optical cavity having a first and second mirror having respective first and second mirror surfaces separated by a first cavity length, and a resonator body interposed therebetween; determining a length difference between the first cavity length and a target cavity length corresponding to a plurality of resonance frequencies that includes a target absolute optical frequency; removing the first mirror to expose a first end of the resonator body; depositing, on one of the first end and the first mirror, a spacer having a thickness within a length tolerance of the determined length difference; and reversibly securing the first mirror to the resonator body, the spacer being between the first mirror and the resonator body, the first and second mirrors being separated, within the length tolerance, by an adjusted cavity length.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: November 27, 2018
    Assignee: Stable Laser Systems, Inc.
    Inventors: Mark Notcutt, Kevin Knabe
  • Patent number: 10098781
    Abstract: A system and method for treating target tissue including a light source for generating a beam of light, a plurality of optical fibers, a deflection device configured to selectively deflect the light beam into the input ends of the optical fibers, one optical fiber input end at a time, and a probe having a tip with the output ends of the optical fibers and configured for insertion into target tissue. The probe tip is configured to sequentially project spaced apart spots of the light beam from the output ends as the deflection device deflects the light beam into the optical fibers. One or more moving or static deflecting optics at the probe tip can be used to statically or dynamically deflect the beam exiting the optical fibers.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: October 16, 2018
    Assignee: TOPCON MEDICAL LASER SYSTEMS INC.
    Inventors: David H. Mordaunt, Dan E. Andersen
  • Patent number: 10064756
    Abstract: A system includes a focusing element configured to receive electromagnetic radiation coaxially and to focus the electromagnetic radiation to generate focused radiation. The system also includes a refracting element having an associated focal plane. The refracting element is configured to receive the focused radiation, and to refract the focused radiation to produce refracted radiation having an annular pattern at the focal plane. The system also includes a slit lamp having a receiving element to receive the refracted radiation.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: September 4, 2018
    Assignee: TOPCON MEDICAL LASER SYSTEMS, INC.
    Inventor: Sheldon Hutchison
  • Patent number: 10052229
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: August 21, 2018
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: Daniel V. Palanker, Dan E. Andersen