Patents Assigned to Lawrence Livermore National Security, LLC
  • Patent number: 11542531
    Abstract: According to one embodiment, a microcapsule for selective catalysis of gases, the microcapsule comprising: a polymeric shell permeable to one or more target gases; and at least one biocatalyst disposed in an interior of the polymeric shell. In more embodiments, methods of forming such microcapsules include: emulsifying at least one biocatalyst in a polymer precursor mixture; emulsifying the polymer precursor mixture in an aqueous carrier solution; crosslinking one or more polymer precursors of the polymer precursor mixture to form a plurality of microcapsules each independently comprising: a polymeric shell permeable to one or more target gases; and at least one biocatalyst disposed in an interior of the polymeric shell. In further embodiments, corresponding methods of using the inventive microcapsules for catalyzing one or more target gases using include: exposing a plurality of the biocatalytic microcapsules to the one or more target gases.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: January 3, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Sarah Baker, Joshuah K. Stolaroff, Congwang Ye
  • Patent number: 11534865
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material (PM) forming a substrate. The system uses a first optical subsystem to generate an optical signal comprised of electromagnetic (EM) radiation sufficient to melt or sinter a PM of the substrate. The first optical subsystem is controlled to generate a plurality of different power density levels, with a specific one being selected based on a specific PM forming a powder bed being used to form a 3D part. At least one processor controls the first optical subsystem and adjusts a power density level of the optical signal, taking into account a composition of the PM. A second optical subsystem receives the optical signal from the first optical subsystem and controls the optical signal to help facilitate melting of the PM in a layer-by-layer sequence of operations.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: December 27, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Bassem S. El-Dasher, Andrew Bayramian, James A. Demuth, Joseph C. Farmer, Sharon G. Torres
  • Patent number: 11538322
    Abstract: An event detection unit (EDU) for detecting an explosive event is provided. The EDU includes different types of sensors for measuring characteristics of an explosive event. The EDU includes an event notification component. The EDU also includes a processor that receives a measurement from the sensors and generates a combined non-event probability and a combined event probability based on that measurement that indicates a likelihood that an explosive event has not occurred or has occurred. The processor determines whether an explosive event has occurred based on the non-event probabilities and event probabilities. When an explosive event has been determined to occur, the processor directs the event notification component to output a notification that an explosive event has occurred.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 27, 2022
    Assignees: Lawrence Livermore National Security, LLC
    Inventors: James Vincent Candy, Karl Albert Fisher, Christopher Roland Candy
  • Patent number: 11535521
    Abstract: A product includes an aerogel having a single bulk structure, the single bulk structure having at least one dimension greater than 10 millimeters. The single bulk structure includes a plurality of pores, where each pore has a largest diameter defined as a greatest distance between pore walls of the respective pore. In addition, an average of the largest diameters of a majority of the pores is within a specified range, and the plurality of pores are distributed substantially homogenously throughout the single bulk structure.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: December 27, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Colin Loeb, Patrick Campbell, Jennifer Marie Knipe, Michael Stadermann
  • Patent number: 11530291
    Abstract: This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: December 20, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Thomas S. Wilson, Michael Keith Hearon, Jane P. Bearinger
  • Patent number: 11525945
    Abstract: A system and method is disclosed for forming a graded index (GRIN) on a substrate. In one implementation the method may involve applying a metal layer to the substrate. A fluence profile of optical energy applied to the metal layer may be controlled to substantially ablate the metal layer to create a vaporized metal layer. The fluence profile may be further controlled to control a size of metal nanoparticles created from the vaporized metal layer as the vaporized metal layer condenses and forms metal nanoparticles, the metal nanoparticles being deposited back on the substrate to form a GRIN surface on the substrate.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: December 13, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jae Hyuck Yoo, Eyal Feigenbaum
  • Patent number: 11526765
    Abstract: Various embodiments of systems and methods for attention models with random features for multi-layered graph embeddings are disclosed.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: December 13, 2022
    Assignees: Arizona Board of Regents on Behalf of Arizona State University, Lawrence Livermore National Security, LLC
    Inventors: Uday Shanthamallu, Jayaraman Thiagarajan, Andreas Spanias, Huan Song
  • Patent number: 11524458
    Abstract: The present disclosure relates to an apparatus for additively manufacturing a product in a layer-by-layer sequence, wherein the product is formed using powder particles deposited on an interface layer of a substrate. A laser generates first and second beam components. The second beam component has a higher power level and a shorter duration than the first beam component. A mask creates a 2D optical pattern in which only select portions of the second beam components can irradiate the powder particles. The first beam component heats the powder particles close to a melting point, where the particles experience surface tension forces relative to the interface layer. While the particles are heated, the second beam component further heats the particles and also melts the interface layer before the surface tension forces can act on and distort the particles, enabling the particles and the interface layer are able to bond together.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: December 13, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. DeMuth, Andrew J. Bayramian, Eric B. Duoss, Joshua D. Kuntz, Christopher M. Spadaccini
  • Patent number: 11522542
    Abstract: A high-voltage switch is adapted for use as a medium-voltage direct current circuit breaker, which provides a low-cost, small-footprint device to mitigate system faults. In one example, a method for operating a wideband optical device includes illuminating the wide bandgap optical device with a light within a first range of wavelengths and a first average intensity, allowing a current to propagate therethrough without substantial absorption of the current, illuminating the wide bandgap optical device with light within the first range of wavelengths and a second average intensity that is lower than the first average intensity to allow a sustained current flow though the wide bandgap optical device, and illuminating the wide bandgap optical device with light within a second range of wavelengths to stop or substantially restrict propagation of the current through the wide gap material.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: December 6, 2022
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Lars F. Voss, Adam M. Conway
  • Patent number: 11513253
    Abstract: A system identifying a source of radiation is provided. The system includes a radiation source detector and a radiation source identifier. The radiation source detector receives measurements of radiation; for one or more sources, generates a detection metric indicating whether that source is present in the measurements; and evaluates the detection metrics to detect whether a source is present in the measurements. When the presence of a source in the measurements is detected, the radiation source identifier for one or more sources, generates an identification metric indicating whether that source is present in the measurements; generates a null-hypothesis metric indicating whether no source is present in the measurements; evaluates the one or more identification metrics and the null-hypothesis metric to identify the source, if any, that is present in the measurements.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: November 29, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Simon E. Labov, Karl E. Nelson, Brandon S. Seilhan
  • Patent number: 11514210
    Abstract: Systems and methods for optimizing a lattice structure design are disclosed herein. In some embodiments, a method for optimizing a lattice structure design can include (i) modeling the lattice structure with a component-wise reduced-order model (CWROM) and (ii) optimizing the CWROM based on a selected criterion using a topology optimization algorithm for lattice design. The selected criterion can include a boundary condition and a load applied to the lattice structure. By modeling the lattice structure as a CWROM, the optimization process can be very fast while still permitting the accurate computation of physical quantities of the lattice structure.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: November 29, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Youngsoo Choi, Sean Laughlin Mcbane
  • Patent number: 11499248
    Abstract: An electric field drives nanocrystals dispersed in solvents to assemble into ordered three-dimensional superlattices. A first electrode and a second electrode 214 are in the vessel. The electrodes face each other. A fluid containing charged nanocrystals fills the vessel between the electrodes. The electrodes are connected to a voltage supply which produces an electrical field between the electrodes. The nanocrystals will migrate toward one of the electrodes and accumulate on the electrode producing ordered nanocrystal accumulation that will provide a superlattice thin film, isolated superlattice islands, or coalesced superlattice islands.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 15, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Yixuan Yu, Joshua D. Kuntz, Christine A. Orme, Andrew J. Pascall
  • Patent number: 11495243
    Abstract: A system determines an event location of an event within an indoor environment based on an event sound generated by the event. The system employs time-reversal techniques based on a received event sound to identify the event location as being in the vicinity of one of a plurality of locator devices at locator locations in the environment. The system includes a base array located within the environment that receives an indication that an event has been detected. Upon receiving the event sound, the system generates a time-reversed event sound for each transceiver and transmits via each transceiver the time-reversed event sound for that transceiver. When a locator device receives a time-reversed event sound, the locator device determines whether the event is in the vicinity of that locator location of the locator device and, if so, outputs an indication that the event occurred at that locator location.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jim Candy, Karl A. Fisher, Christopher Roland Candy
  • Patent number: 11491215
    Abstract: Provided herein are antigenic combinations and related compositions, methods and systems for immunizing a host from an infection caused by Francisella bacterium. The antigenic combination comprises an antigenic polysaccharide component from a Francisella bacterium capable of triggering a humoral immune response in an individual, a protein antigen component from the Francisella bacterium capable of triggering a cellular immune response in the individual, and an adjuvant, the antigenic Francisella polysaccharide component, the Francisella protein antigen component and the adjuvant are in a suitable amount to immunize an individual against the Francisella bacterium.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: November 8, 2022
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, REGENTS OF THE UNIVERSITY OF NEW MEXICO
    Inventors: Nicholas Fischer, Amy Rasley, Terry Wu, Julie Lovchik
  • Patent number: 11492380
    Abstract: Described are methods, compositions, and devices for a concatemeric protein standard that behaves as a protein but transforms into single peptides upon digestion, which is optimized to function as a non-obtrusive process control for mass spectrometry analysis.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: November 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mathew Gerald Lyman, Deon S. Anex, Bonnee Rubinfeld
  • Patent number: 11496143
    Abstract: Smart electric meters configured to perform fast, time-synchronized electrical energy measurements at the consumer-level are disclosed herein. In some embodiments, a smart electric meter includes circuitry configured to measure an electrical value at a location of an end user in a power system. The smart electric meter can further include an atomic clock configured to output a timing signal, and a controller configured to receive (a) the measured electrical value from the circuitry and (b) the timing signal from the atomic clock. The controller can further (a) process the electrical value to generate meter data and (b) generate a time tag based on the timing signal. Then, the controller can associate the time tag with the meter data to generate time-tagged meter data.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: November 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Liang Min, Can Huang
  • Patent number: 11493756
    Abstract: Reduction or elimination of negative consequences of reflected stray light from lens surfaces is achieved by propagating a laser beam through an eccentric pupil that excludes the optical axis of the system, which is rotationally symmetric. In such systems, stray light reflections eventually are focused onto the unique optical axis of the system, in either a real or virtual focal region. By using an eccentric pupil, all damage due to focusing of the stray light lies outside of the beam. These focal regions can, e.g., be physically blocked to eliminate beam paths that lead to optical damage, re-pulse beams and parasitic lasing.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: November 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Lynn G. Seppala, Alvin C. Erlandson
  • Patent number: 11479467
    Abstract: Disclosed here is a method of fabricating a covalently reinforced carbon nanotube (CNT) assembly. The method includes producing a CNT assembly by pulling entangled CNTs from a CNT array fabricated on a substrate, the CNT assembly including a plurality of CNTs that are aligned; and creating covalent bonding between the CNTs of the CNT assembly by applying a high energy ion irradiation to the CNT assembly.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 25, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Xavier N. Lepro Chavez, Chantel M. Aracne-Ruddle, Leonardus Bimo Bayu Aji, Sergei O. Kucheyev, Michael Stadermann
  • Patent number: 11474106
    Abstract: The invention relates to methods, systems and kits for determining therapeutic effectiveness or toxicity of cancer-treating compounds that incorporate into or bind to DNA. In particular, the invention is directed to methods, systems and kits for predicting a patient's treatment outcome after administration of a microdose of therapeutic composition to the patient. The methods provides physicians with a diagnostic tool to segregate cancer patients into differential populations that have a higher or lower chance of responding to a particular therapeutic treatment.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: October 18, 2022
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Paul Henderson, George D. Cimino, Chong-Xian Pan, Ralph William de Vere White, Maike Zimmermann, Kenneth W. Turteltaub
  • Patent number: 11459439
    Abstract: An embodiment includes a system comprising: a monolithic shape memory polymer (SMP) foam having first and second states; wherein the SMP foam includes: (a) polyurethane, (b) an inner half portion having inner reticulated cells defined by inner struts, (c) an outer half portion, having outer reticulated cells defined by outer struts, surrounding the inner portion in a plane that provides a cross-section of the SMP foam, (d) hydroxyl groups chemically bound to outer surfaces of both the inner and outer struts. Other embodiments are discussed herein.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: October 4, 2022
    Assignees: Lawrence Livermore National Security, LLC, The Texas A&M University System
    Inventors: Landon D. Nash, Duncan J. Maitland, Nicole Docherty, Thomas S. Wilson, Ward Small, IV, Jason Ortega, Pooja Singhal