Patents Assigned to Lawrence Livermore National Security, LLC
  • Patent number: 11726387
    Abstract: A trapped-ion quantum logic gate and a method of operating the trapped-ion quantum logic gate are provided. The trapped-ion quantum logic gate includes at least one ion having two internal states and forming a qubit having a qubit transition frequency ?0, a magnetic field gradient, and two microwave fields. Each of the two microwave fields has a respective frequency that is detuned from the qubit transition frequency ?0 by frequency difference ?. The at least one ion has a Rabi frequency ?? due to the two microwave fields and a Rabi frequency ?g due to the magnetic field gradient. The method includes applying the magnetic field gradient and the two microwave fields to the at least one ion such that a quantity ?g/? is in a range between zero and 5×10?2.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: August 15, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Robert Tyler Sutherland
  • Publication number: 20230249397
    Abstract: The present disclosure relates to an additive manufacturing system for forming at least one of forming a part or modifying a surface using a volume of polymerizable resin. The system makes use of a subsystem for generating power output signals, and at least one acoustic transducer. The acoustic transducer is placed in a vicinity of the volume of polymerizable resin and is responsive to the power output signals. The acoustic transducer generates and projects ultrasound energy in response to receiving the power output signals to at least one spatial location within the volume of resin to cause polymerization of at least a portion of the volume of resin to at least one of form the part or modify the surface.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 10, 2023
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Ishan JOSHIPURA, Martin DE BEER, Jordan Seiji LUM, Maxim SHUSTEFF, David Matthew STOBBE
  • Patent number: 11718898
    Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 8, 2023
    Assignees: Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
  • Patent number: 11718924
    Abstract: A method for forming a ceramic according to one embodiment includes electrophoretically depositing a plurality of layers of particles of a non-cubic material. The particles of the deposited non-cubic material are oriented in a common direction.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: August 8, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Klint Aaron Rose, Joshua D. Kuntz, Marcus A. Worsley
  • Patent number: 11721239
    Abstract: An incident simulation system supports an incident exercise in a virtual environment. The incident simulation system accesses a simulation plan defining an incident within a theater of operation. The incident simulation system simulates the incident exercise by displaying, to a participant in the incident exercise, images representing what the participant would see within the theater of operation as the participant moves within the theater of operation. The incident simulation system further simulates the incident by generating incident data indicating effects of the incident at target locations and at target times as the participant moves within the theater of operation. The incident simulation system further simulates the incident by displaying to the participant images representing the user experience that a detector would provide based on the generated incident data.
    Type: Grant
    Filed: September 4, 2021
    Date of Patent: August 8, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Gregory K. White, William H. Dunlop, T R Koncher, Steve Kreek
  • Patent number: 11718787
    Abstract: In one embodiment, a composition of matter includes a crystalline porous structure having a density in a range from about 30 to about 50 mg/cm3. In another embodiment, a kit includes an amorphous, porous material, an inert pressure medium, a heating source, and a sample chamber configured to withstand an applied pressure of at least about 20 GPa. Other aspects and embodiments of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: August 8, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter J. Pauzauskie, Jonathan C. Crowhurst, Marcus A. Worsley, Joe H. Satcher, Jr.
  • Patent number: 11721771
    Abstract: According to one embodiment, a device includes a first electrode, a second electrode spaced from the first electrode, a well extending between the first electrode and the second electrode, one or more chalcogens in the well, and at least one halogen mixed with the one or more chalcogens in the well. In addition, the chalcogens are selected from the group consisting of sulfur, selenium, tellurium, and polonium.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 8, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Lars Voss, Clint Frye, Roger A. Henderson, John Winter Murphy, Rebecca J. Nikolic, Dongxia Qu, Qinghui Shao, Mark A. Stoyer
  • Publication number: 20230241718
    Abstract: The present disclosure relates a method for forming a second material from a first material. The method involves providing a first material having a surface, and irradiating the surface with a heating beam. The surface is also exposed to a flow of reactant while the surface is being heated with the heating beam. This transforms at least a portion of the surface into a second, transformed material different from the first material.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Jae Hyuck YOO, Eyal FEIGENBAUM
  • Patent number: 11715924
    Abstract: Space-to-time pulse shaping techniques are provided that maintain high fidelity with a practical output coupler, maintain an output resolution that is no longer than the input pulse, and are scalable to long records while maintaining fine resolution.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 1, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Ryan D. Muir, John E. Heebner, Daniel E. Mittelberger
  • Patent number: 11715592
    Abstract: In one embodiment, a magnet includes a three-dimensional structure with nanoscale features, where the three-dimensional structure has a near net shape corresponding to a predefined shape.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: August 1, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Sarah Baker, Joshua Kuntz, Scott K. Mccall, Christine A. Orme, Alexander A. Baker, Jonathan R. I. Lee
  • Patent number: 11712750
    Abstract: The present disclosure relates to a laser system for processing a material. The system may make use of a laser configured to intermittently generate a first laser pulse of a first duration and a first average power, at a spot on a surface of the material being processed, and a second laser pulse having a second duration and a second peak power. The second duration may be shorter than the first duration by a factor of at least 100, and directed at the spot. The second laser pulse is generated after the first laser pulse is generated. The first laser pulse is used to heat the spot on the surface of the material, while the second laser pulse induces a melt motion and material ejection of molten material from the melt pool.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 1, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Sonny S. Ly, Jeffrey D. Bude, Gabriel Mark Guss, Wesley John Keller, Raluca A. Negres, Alexander M. Rubenchik, Nan Shen
  • Patent number: 11715607
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a mixture of graphene oxide and water, adding a hydroxylated fullerene to the mixture, and forming a gel of the hydroxylated fullerene and the mixture. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: August 1, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Monika M. Biener, Maira Raquel Ceron Hernandez
  • Patent number: 11713493
    Abstract: This disclosure provides engineered microbes coding at least one rare earth element (REE) binding ligand for the preferential separation of REEs, as well as methods of use thereof.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: August 1, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Dan Mcfarland Park, Aaron William Brewer, Yongqin Jiao
  • Patent number: 11713359
    Abstract: The present invention provides a nanodisc with a membrane scaffold protein. The nanodisc includes a membrane scaffold protein, a telodendrimer and a lipid. The membrane scaffold protein can be apolipoprotein. The telodendrimer has the general formula PEG-L-D-(R)n, wherein D is a dendritic polymer; L is a bond or a linker linked to the focal point group of the dendritic polymer; each PEG is a poly(ethylene glycol) polymer, each R is and end group of the dendritic polymer, or and end group with a covalently bound hydrophobic group, hydrophilic group, amphiphilic compound, or drug; and subscript n is an integer from 2 to 20. Cell free methods of making the nanodiscs are also provided.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: August 1, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Juntao Luo, Wei He, Kit S. Lam, Paul Henderson, Matthew A. Coleman
  • Patent number: 11707719
    Abstract: Fabrication of functional polymer-based particles by crosslinking UV-curable polymer drops in mid-air and collecting crosslinked particles in a solid container, a liquid suspension, or an air flow. The particles can contain different phases in the form or layered structures that contain one to multiple cores, or structures that are blended with dissolved or emulsified smaller domains. A curing system produces ultraviolet rays that are directed onto the particles in the jet stream from one side. A reflector positioned on other side of the jet stream reflects the ultraviolet rays back onto the particles in the jet stream.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: July 25, 2023
    Assignees: Lawrence Livermore National Security, LLC, Purdue Research Foundation
    Inventors: Congwang Ye, Roger D. Aines, Sarah E. Baker, Caitlyn Christian Cook, Eric B. Duoss, Joshua D. Kuntz, Elaine Lee, James S. Oakdale, Andrew J. Pascall, Joshuah K. Stolaroff, Marcus A. Worsley, Carlos J. Martinez
  • Patent number: 11705250
    Abstract: A magnetic shielding material includes a material comprising manganese bismuth (MnBi) and tungsten (W), where a ratio of MnBi:W is in a range of 50:50 to about 70:30. A radiation shielding product includes a part including manganese bismuth (MnBi) and tungsten (W), and a plurality of layers having a defined thickness in a z-direction, wherein each layer extends along an x-y plane perpendicular to the z-direction. At least some of the plurality of layers form a functional gradient in the z-direction and/or along the x-y plane, and the functional gradient is defined by a first layer comprising a ratio of MnBi:W being less than 100:0 and an nth layer above the first layer comprising a ratio of MnBi:W greater than 0:100.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: July 18, 2023
    Assignees: Lawrence Livermore National Security, LLC, American Ceramic Technology
    Inventors: Scott McCall, Richard Culbertson
  • Patent number: 11701827
    Abstract: A multi-beam volumetric resin curing system and method for whole-volume additive manufacturing of an object includes a bath containing a photosensitive resin, a light source for producing a light beam, and a spatial light modulator which produces a phase- or intensity-modulated light beam by impressing a phase profile or intensity profile of an image onto a light beam received from the light source. The system and method also include projection optics which then produces multiple sub-image beams from the modulated light beam which are projected to intersect each other in the photosensitive resin to cure select volumetric regions of the resin in a whole-volume three-dimensional pattern representing the object.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: July 18, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Maxim Shusteff, Christopher M. Spadaccini, Nicholas Fang, Robert Matthew Panas, Johannes Henriksson, Brett Kelly, Allison E. Browar
  • Patent number: 11699079
    Abstract: A system for time series analysis using attention models is disclosed. The system may capture dependencies across different variables through input embedding and may map the order of a sample appearance to a randomized lookup table via positional encoding. The system may capture capturing dependencies within a single sequence through a self-attention mechanism and determine a range of dependency to consider for each position being analyzed. The system may obtain an attention weighting to other positions in the sequence through computation of an inner product and utilize the attention weighting to acquire a vector representation for a position and mask the sequence to enable causality. The system may employ a dense interpolation technique for encoding partial temporal ordering to obtain a single vector representation and a linear layer to obtain logits from the single vector representation. The system may use a type dependent final prediction layer.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: July 11, 2023
    Assignees: Arizona Board of Regents On Behalf Of Arizona State University, Lawrence Livermore National Security. LLC
    Inventors: Andreas Spanias, Huan Song, Jayaraman J. Thiagarajan, Deepta Rajan
  • Patent number: 11697032
    Abstract: Methods, devices and systems for ultra-high dose radiotherapy are disclosed. The described techniques rely in-part on active switching control of a photoconductive switch during the time the accelerator is accelerating charged particles to produce the output radiation at the desired dose rates. One flash radiotherapy system includes an induction accelerator, and a controllable switch coupled to the induction accelerator. The switch is operable to produce a plurality of voltage pulses to drive the induction accelerator. The radiotherapy system also includes a radiation measurement device to measure output radiation produced by the radiotherapy system and provide feedback to the controllable switch. The controllable switch is operable to, based on the received feedback, modify an amplitude, shape, spacing, number or width of the voltage pulses that are supplied to the particle accelerator to deliver the desired output radiation.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: July 11, 2023
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, OPCONDYS, INC.
    Inventors: Stephen E. Sampayan, Kristin Cortella Sampayan, George James Caporaso, Yu-Jiuan Chen, Clifford C. Shang
  • Patent number: 11698490
    Abstract: The present disclosure relates to a method of forming a tapered optical fiber, where the optical fiber has a cladding encasing a core and has an initial outer diameter. The method involves applying opposing forces to spaced apart sections of the optical fiber. The spaced apart sections define a length portion representing a waist region. While applying the opposing forces, simultaneously applying heat to the waist region to gradually produce a taper of the optical fiber within the waist region. The taper has a first diameter at a midpoint of the waist region which is less than the initial outer diameter. An etch operation is then performed by chemically etching at least a subportion of the waist region of the optical fiber to reduce the subportion to a second diameter which is less than the first diameter.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: July 11, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Tiziana C. Bond, Sara Elizabeth Harrison, Catherine E. Reinhardt, Payal Kamlesh Singh, Victor V. Khitrov