Patents Assigned to Lehigh University
  • Patent number: 10345626
    Abstract: In one aspect the invention provides a graded refractive index single crystal waveguide having a glass block containing at least one crystal core, the crystal core having a central portion extending along an axis from a first end to a second end; an interface defining a peripheral boundary of the crystal core at a junction of the crystal core and an adjacent portion of the glass block, and a continuous, radially symmetric misorientation transverse to the central portion; wherein the misorientation has a misorientation angle that increases with increasing distance from the central portion towards the interface.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: July 9, 2019
    Assignee: Lehigh University
    Inventors: Himanshu Jain, Volkmar Dierolf, Keith J. Veenhuizen
  • Patent number: 10347722
    Abstract: A material structure and system for generating a III-Nitride digital alloy.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 9, 2019
    Assignee: LEHIGH UNIVERSITY
    Inventors: Nelson Tansu, Wei Sun, Chee-Keong Tan
  • Patent number: 10324313
    Abstract: In one aspect the invention provides a graded refractive index single crystal waveguide having a glass block containing at least one crystal core, the crystal core having a central portion extending along an axis from a first end to a second end; an interface defining a peripheral boundary of the crystal core at a junction of the crystal core and an adjacent portion of the glass block, and a continuous, radially symmetric misorientation transverse to the central portion; wherein the misorientation has a misorientation angle that increases with increasing distance from the central portion towards the interface.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 18, 2019
    Assignee: LEHIGH UNIVERSITY
    Inventors: Himanshu Jain, Volkmar Dierolf, Keith J. Veenhuizen
  • Patent number: 10301826
    Abstract: Provided herein are connectors for use in assembling reinforced concrete structures, as well as methods of assembly using the connectors. In one embodiment, the connectors and methods provide for secure and easy connection to the butt end of any rebar rod, as well as attachment of an opposite end to another metal structure. For example, a butt portion of a connector slides over the butt portion of a rebar rod, and can include one or more sidewall openings to allow welding onto rebar that is enclosed within the butt portion of the connector. The opposite second end can include a faceplate for attaching a weld plate, thus permitting a series of connections using connectors and weld plates, among other things. The connectors provide selected properties that differ from the rebar, welds, and weld plates, such as stretch, yield strength, ultimate strength, and transfer of stress and vibration, among other things.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: May 28, 2019
    Assignee: LEHIGH UNIVERSITY
    Inventor: Clay Naito
  • Patent number: 10294582
    Abstract: The present invention includes methods of promoting single crystal growth via solid-solid transformation of an appropriate glass, while avoiding the gaseous or liquid phase. In certain embodiments, in the all-solid-state glass-to-crystal transformation of the invention, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and optional inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface was demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth and active planar devices, for example.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: May 21, 2019
    Assignee: LEHIGH UNIVERSITY
    Inventors: Himanshu Jain, Dmytro Savytskyy, Volkmar Dierolf
  • Publication number: 20190079320
    Abstract: In one aspect the invention provides a graded refractive index single crystal waveguide having a glass block containing at least one crystal core, the crystal core having a central portion extending along an axis from a first end to a second end; an interface defining a peripheral boundary of the crystal core at a junction of the crystal core and an adjacent portion of the glass block, and a continuous, radially symmetric misorientation transverse to the central portion; wherein the misorientation has a misorientation angle that increases with increasing distance from the central portion towards the interface.
    Type: Application
    Filed: November 14, 2018
    Publication date: March 14, 2019
    Applicant: Lehigh University
    Inventors: Himanshu Jain, Volkmar Dierolf, Keith J. Veenhuizen
  • Patent number: 10189715
    Abstract: Compositions comprising nanoparticles (e.g., nanocrystals) of stishovite silica are described. Such nanoparticles may be made by (1) subjecting a mesoporous silica starting material (e.g., SBA-16 or KIT-6) to a pressure of less than about 20 GPa (e.g., about 12 GPa); (2) heating the mesoporous silica starting material while under pressure to an elevated temperature of less than about 1000° C. (e.g., a temperature of between about 300° C. and about 400° C.); and thereafter isolating the nanoparticles. The nanoparticles may be used in a work tool that is configured and adapted for cutting, drilling, abrading, polishing, machining, or grinding, among other uses.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 29, 2019
    Assignee: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty, Yingwei Fei
  • Patent number: 10125033
    Abstract: The present invention includes an anion exchange method that uses sulfate-containing acid mine drainage (AMD), or any sulfate containing water resource, to remove strontium, barium, and/or radium from contaminated water sources, such as but not limited to hydraulic fracturing waste water, flowback, and/or produced water, without requiring any external regenerant. The removal process may be adopted with any waste water or impaired water source containing sulfate anions.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: November 13, 2018
    Assignee: Lehigh University
    Inventors: Arup K. Sengupta, Michael German, Jinze Li
  • Patent number: 10115859
    Abstract: A symmetrical quantum well active layer provides enhanced internal quantum efficiency. The quantum well active layer includes an inner (central) layer and a pair of outer layers sandwiching the inner layer. The inner and outer layers have different thicknesses and bandgap characteristics. The outer layers are relatively thick and include a relatively low bandgap material, such as InGaN. The inner layer has a relatively lower bandgap material and is sufficiently thin to act as a quantum well delta layer, e.g., comprising approximately 6 ? or less of InN. Such a quantum well structure advantageously extends the emission wavelength into the yellow/red spectral regime, and enhances spontaneous emission. The multi-layer quantum well active layer is sandwiched by barrier layers of high bandgap materials, such as GaN.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 30, 2018
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Hongping Zhao, Guangyu Liu, Gensheng Huang
  • Publication number: 20180305310
    Abstract: Augmented or synergized anti-inflammatory constructs are disclosed including anti-inflammatory amino acids covalently conjugated with other anti-inflammatory molecules such as nonsteroidal anti-inflammatory drugs, vanilloids and ketone bodies. Further conjugation with a choline bioisostere or an additional anti-inflammatory moiety further augments the anti-inflammatory activity.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Applicants: Rutgers, The State University of New Jersey, Lehigh University
    Inventors: Jeffrey D. Laskin, Diane E. Heck, Carl J. Lacey, Ned D. Heindel, Sherri C. Young
  • Publication number: 20180043652
    Abstract: Resilient members having near-surface architectures including microstructures for controlling friction are provided. A film-terminated array of fibrils having a sharp film/fibril juncture exhibits an unexpectedly large enhancement of adhesion, static friction and sliding friction. The enhancement is provided against rough indenters. A film-terminated array of elongated ridges and valleys unexpectedly exhibits low adhesion, and an unexpectedly large enhancement of sliding friction. The film-terminated ridge/valley design provides an anisotropic structure with direction-dependent frictional properties. The increase in sliding friction force varies as a function of interfibrillar spacing, and corresponds to a mode in which buckling of the terminal film occurs. The near surface architectures may be designed with varying scales and varying parameters to provide performance characteristics tailored to various applications.
    Type: Application
    Filed: February 17, 2016
    Publication date: February 15, 2018
    Applicants: Lehigh University, Compagnie Generale Des Etablissements Michelin
    Inventors: Anand Jagota, Ying Bai, Zhenping He, Chung-Yuen Hui, Benjamin Levrard
  • Publication number: 20170335309
    Abstract: Novel semiconductor nanoparticles and methods of biosynthesizing the same are provided by biosynthetic processes using cell-free supernatants and isolated enzymes.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Applicant: Lehigh University
    Inventors: Bryan Berger, Steven McIntosh
  • Patent number: 9765323
    Abstract: Described herein are isolated recombinant proteins having lyase activity and nucleic acid sequences which code therefor; along with methods of expressing, isolating, purifying, and using same.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: September 19, 2017
    Assignee: Lehigh University
    Inventor: Bryan William Berger
  • Patent number: 9731983
    Abstract: The present invention includes a novel salt-free water softening method that utilizes an exchange medium (such as a gel exchange polymer, a macroporous exchange polymer, or an inorganic cation exchanger) that is pre-loaded with a polyvalent cation that has low solubility in aqueous phase at nearly neutral pH. The method of the invention does not require use of a sodium salt or mineral acid in the regeneration of the exchange medium.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: August 15, 2017
    Assignee: Lehigh University
    Inventors: Arup K Sengupta, Surapol Padungthon, Michael German, Jinze Li
  • Patent number: 9701566
    Abstract: Provided herein are novel nanoporous glass fibers, and methods of preparing and using such fibers. In some embodiments, articles are made from particular glass starting materials, such as soda-lime phosphosilicate glass fabricated by melt-quench methods. The articles include nanoporous fibers that can be used alone, or sewn, woven, bundled, and otherwise incorporated to form nanoporous articles, including bioactive articles.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: July 11, 2017
    Assignee: Lehigh University
    Inventors: Hassan M.M. Moawad, Himanshu Jain
  • Patent number: 9660416
    Abstract: A distributed antenna-coupling feedback scheme and specially designed distributed feedback (DFB) metallic cavity and grating for laser application and in particular to plasmonic lasers ensuring a predesigned phase condition such that a mode traveling inside a waveguide is coupled/phase-locked to a mode traveling on the top metal improving the beam quality of the laser.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Lehigh University
    Inventors: Sushil Kumar, Chongzhao Wu
  • Patent number: 9656900
    Abstract: Provided herein are methods for preparing nano-macroporous glass articles, such as bioscaffolds, from starting materials such as phosphosilicate glasses made by melt-quench methods, mixed with a soluble pore former such as a sugar, followed by steps of dissolving, heating, and leaching to yield a glass composition having a highly interconnected system of both macropores and large scale nanoporosity.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 23, 2017
    Assignee: Lehigh University
    Inventors: Himanshu Jain, Hassan Mohamady Mohamed Moawad
  • Patent number: 9649589
    Abstract: A oxygen concentrating system comprising an adsorption column having a first end and a second end, a shell enclosing the column and defining a product gas storage space between the column and the shell, a product conduit connecting the product gas storage space to a product output point, a first conduit comprising at least one first valve having at least a first and second configuration, in the first configuration, compressed air flows from the feed point to the first end, and, in the second configuration, waste gas flows from the first end to the waste point, and a second conduit comprising at least one second valve having at least a first and second configuration, in the first configuration, the product gas flows from the product gas storage space to the second end, and, in the second configuration, the product gas flows from the second end to the storage space.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: May 16, 2017
    Assignee: Lehigh University
    Inventors: Rama Rao Vemula, Shivaji Sircar, Mayuresh Kothare
  • Patent number: 9623398
    Abstract: Provided herein are synthetic porous electron-rich covalent organonitridic frameworks (PECONFs). The PECONFs are useful as an adsorbent class of materials. In the PECONFs, inorganic nitridic building units are interconnected via electron-rich aromatic units to form porous covalent frameworks. The frameworks include tunable porous, electron-rich organonitridic frameworks, which are determined based upon synthetic methods as exemplified herein.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: April 18, 2017
    Assignee: Lehigh University
    Inventors: Kai Landskron, Mohanty Paritosh
  • Patent number: 9580337
    Abstract: A pressurized forward osmotic separation process is disclosed. Generally there are two processes described. One process involves the concentration of a target solute in the first solution; the other process involves the extraction of a solvent from a first solution both by a second solution comprising of water and soluble gas or water, soluble gas, and a compound by creating an osmotic concentration gradient across the semi permeable membrane. The first solution is under pressure from an inert gas and the second solution is under pressure from a soluble gas with equal system pressures greater than 1 atmosphere. The increase or decrease of partial pressure of the soluble gas in the second solution increases or decreases the chemical potential of the second solution to achieve different solution properties. The soluble gas may be carbon dioxide and the compound may be magnesium hydroxide.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 28, 2017
    Assignee: Lehigh University
    Inventors: Arup SenGupta, Robert Creighton, Ryan Smith