Abstract: A method for processing a time-domain signal with transient oscillations includes: performing, by one or more computer systems, a time-frequency representation transform on the time-domain signal to obtain a plurality of coefficients for, with a coefficient corresponding to a presence of an impulse response of a filter used by the time-frequency representation transform; selecting one or more of the coefficients, with the selected one or more of the coefficients having attributes that are more indicative of the transient oscillations; and reconstructing, based on performing an inverse transform on the selected one or more coefficients, a portion of the time-domain signal that represents the transient oscillations.
Type:
Grant
Filed:
August 1, 2014
Date of Patent:
May 30, 2017
Assignee:
LitePoint Corporation
Inventors:
Todd Drullinger, Michael Smedegaard, Rick Chao, Soren Louis Pedersen
Abstract: A system and method for testing a wireless data packet signal transceiver device under test (DUT) by using DUT control circuitry separate from a tester to access and execute test program instructions for controlling the DUT during testing with the tester. The test program instructions can be provided previously and stored for subsequent access and execution under control of the tester or an external control source, such a personal computer. Alternatively, the test program instructions can be provided by the tester or external control source immediately prior to testing, such as when beginning testing of a DUT with new or different performance characteristics or requirements. Accordingly, specialized testing of different DUTs while accounting for differences among various chipsets employed by the DUTs can be performed in coordination with a standard tester configuration without need for reconfiguring or reprogramming of the tester.
Abstract: Method for testing one or more of a group of radio frequency (RF) data packet signal transceiver devices under test (DUTs) with reduced signal interference from the remaining DUTs. A tester broadcasts a signal containing power control instructions about uplink signal power characteristics for communication with the tester. For example, for the LTE 3GPP standards, such characteristics could include power ramping step size, preamble initial received target power or maximum number of preamble transmissions for uplink signals transmitted from the DUTs. Following initiation of communication between the tester and one or more DUTs, the tester broadcasts a signal containing power control instructions to instruct the remaining DUTs to transmit any future signals with different uplink signal power characteristics.
Type:
Grant
Filed:
June 4, 2015
Date of Patent:
March 28, 2017
Assignee:
LitePoint Corporation
Inventors:
Steve Lawrence Sheya, Soumyadeep Banerjee, Ramakrishna Yellapantula
Abstract: A method of using tester data packet signals and control instructions for testing multiple data packet signal transceiver devices under test (DUTs). During mutually alternating time intervals, selected ones of which are substantially contemporaneous, multiple tester data packet signals and DUT control instructions are used for concurrent testing of multiple DUTs.
Abstract: System and method for capturing and enabling analysis of one or more test data packets from a radio frequency (RF) data packet signal transmitter device under test (DUT). Recently captured data packets from a received RF data packet signal are retained for analysis following confirmation that they contain potentially valid test data packets. Such confirmation is achieved by confirming that a data pattern defined by currently captured data packets differs from a data pattern defined by subsequently received data packets. Following such confirmation, a trigger signal initiates access and/or analysis of the captured data packets.
Abstract: A method for using a test data packet signal to test a data packet signal transceiver device under test (DUT) having an operating characteristic defined by a data packet error rate (PER) as a function of data packet signal power (PWR). The test data packet signal power is varied and a test PER is computed as a function of DUT response data packets and test data packets until a measured test PER or a computed test PER extrapolated from measured PERs is equal to a predetermined PER less than and greater than maximum and minimum PERs, respectively.
Abstract: A system and method for enabling automated testing of wireless data packet signal transceiver devices under test (DUTs). One or more DUTs are enclosed inside respective chambers within a shielded enclosure providing electromagnetic shielding for its interior region. Each DUT is powered by an internal power source and its radio frequency (RF) signal port is connected to an external RF signal interface at an outer wall of the shielded enclosure. An anchor at an outer wall of the shielded enclosure enables mechanical engagement with and physical displacement of the shielded enclosure, thereby allowing DUTs to be manipulated using pick and place automation devices for engagement with and connection to automated test equipment. Such test equipment can be assembled into vertically stacked RF signal test stations with which shielded DUT enclosures are engaged by physically mating their respective power and RF signal ports using the pick and place automation device.
Abstract: A system and method for facilitating comparison of radio frequency (RF) data signals transmitted by a device under test (DUT) and received by a test system. A RF data signal received from a DUT is analyzed to provide analysis data indicative of conformance of the DUT operation with one or more applicable signal standards. The RF data signal is also converted to related conversion data that can be stored with state machine data corresponding to states of the signal testing subsystem. This state machine data can then be processed as needed with the analysis data and conversion data for off-line tasks such as debugging new test programs and procedures.
Type:
Grant
Filed:
July 20, 2012
Date of Patent:
April 26, 2016
Assignee:
LITEPOINT CORPORATION
Inventors:
Christian Volf Olgaard, Jonathan Barry Hirst, Wing Hung Lee
Abstract: Methods for testing multiple data packet signal transceiver devices under test (DUTs) with a shared tester. The DUTs transmit their data packet signals until predetermined numbers of data packets have been transmitted or predetermined time intervals expire, following which, each DUT awaits a synchronization request to begin transmitting data packets to the tester. Alternatively, the tester determines when its receiver is available for receiving data packets, following which, synchronization requests are sent to respective DUTs to initiate their transmissions of data packets to the tester. Further alternatively, power levels among data packets initially transmitted from the DUTs are monitored to determine when they are indicative of them having settled. As each DUT data packet signal power settles, a status signal indicating the settled nature of each DUT is provided to the tester which then begins receiving the respective DUT data packet signals, as they settle in power, for analysis.
Abstract: System and method for using a shared packet data signal source to test multiple packet data signal transceiver devices under test (DUTs) capable of communicating using multiple radio access technologies (RATs). The signal source provides a packet data signal that includes a plurality of sequential signal segments having respective signal timing parameters and mutually distinct signal characteristics in accordance with the RATs. Based upon the signal timing parameters, at least a portion of each signal segment is routed to a respective one of multiple signal connections for conveyance to a corresponding DUT.
Type:
Grant
Filed:
January 2, 2014
Date of Patent:
April 19, 2016
Assignee:
LITEPOINT CORPORATION
Inventors:
Jonathan Barry Hirst, James L. Banzen, William L. Barker, Jr.
Abstract: Circuitry for shifting a phase of a radio frequency (RF) signal. Mutually dissimilar and electrically coupled portions of an electromagnetic transmission line pattern on one side of a substrate interact with another electromagnetic transmission line pattern on the opposing substrate side to convey a RF signal with a phase shift that is determined by the RF signal frequency and respective dimensions of the electromagnetic transmission line patterns and is substantially constant over a wide bandwidth. With multiple implementations of such opposing electromagnetic transmission line patterns having different pattern dimensions and coupled between RF signal switches, multiple phase shifts can be selectively provided.
Abstract: A system and method for testing a radio frequency (RF) multiple-input-multiple-output (MIMO) device under test (DUT) in which system costs are minimized by using fewer precision RF MIMO testing subsystems together with lower precision integrated RF MIMO signal conversion circuitry to test the DUT.
Abstract: System and method for using multiple data packet signal testers having narrower data packet signal bandwidths for testing multiple data packet signal transmitters having wider data packet signal bandwidths. Using multiple data packet signal testers with narrower receiver bandwidths to process respective portions of the wider bandwidth of the data packet signals produced by the devices under test (DUTs) enables use of lower cost, narrower-bandwidth test equipment to test wide-bandwidth signals.
Abstract: Methods for testing multiple data packet signal transceiver devices under test (DUTs) with a shared tester. The DUTs transmit their data packet signals until predetermined numbers of data packets have been transmitted or predetermined time intervals expire, following which, each DUT awaits a synchronization request to begin transmitting data packets to the tester. Alternatively, the tester determines when its receiver is available for receiving data packets, following which, synchronization requests are sent to respective DUTs to initiate their transmissions of data packets to the tester. Further alternatively, power levels among data packets initially transmitted from the DUTs are monitored to determine when they are indicative of them having settled. As each DUT data packet signal power settles, a status signal indicating the settled nature of each DUT is provided to the tester which then begins receiving the respective DUT data packet signals, as they settle in power, for analysis.
Abstract: System and method for confirming radio frequency (RF) signal connections with multiple devices under test (DUTs) tested concurrently using replicas of a RF test signal. Cabled signal connections between the signal source and the DUTs are monitored by sensing levels of outgoing and related reflection RF signals. These signal levels are compared against similar signal levels when the outgoing RF signals are provided to reference impedances. Alternatively, the cabled signal connections have lengths of known signal wavelengths and the RF test signal frequency is swept such that minimum and maximum time delays between the outgoing and reflection RF signals go through minimum and maximum signal cycles with a difference of at least one full cycle. The reflection RF signal magnitude and phase are monitored, from which peak and valley signal level differences and phase changes are identified to determine return loss and phase changes indicative of DUT connection.
Abstract: A system and method for enabling testing a data link of a data packet signal transceiver device under test (DUT). A RX data packet signal originating from a reference device is conveyed for reception by a DUT, and a TX data packet signal originating from the DUT is conveyed for reception by the reference device. At least a portion of the RX data packet signal is conveyed with a signal attenuation and at least a portion of the TX data packet signal is conveyed with a different signal attenuation.
Abstract: An apparatus and method of operating automated test equipment (ATE) in a networked environment of multiple external test controllers. The system resources responsible for coordinating the shared uses of the ATE by the multiple external test controllers are centralized within the ATE. As a result, programming of the respective test controllers is simplified since the test controllers no longer need be responsible for communicating among themselves to coordinate or otherwise determine how and when access to the ATE is granted to any particular test controller.
Type:
Grant
Filed:
October 31, 2007
Date of Patent:
October 13, 2015
Assignee:
LITEPOINT CORPORATION
Inventors:
Christian Volf Olgaard, Thomas Toldborg Andersen, Carsten Andersen
Abstract: A method of testing, such as for a bit error rate (BER), of multiple data packet signal transceivers during which a tester and the data packet signal transceivers exchange sequences of test data packets and summary data packets. The tester provides the test data packets which contain respective pluralities of data bits with respective predetermined bit patterns. Responsive thereto, the data packet signal transceivers provide the summary data packets which contain respective summary data indicative of the number of data bits with the respective predetermined bit patterns that are correctly received by corresponding ones of the data packet signal transceivers.
Type:
Grant
Filed:
December 20, 2012
Date of Patent:
October 13, 2015
Assignee:
LITEPOINT CORPORATION
Inventors:
Christian Volf Olgaard, Erdem Serkan Erdogan, Ruizu Wang, Guang Shi
Abstract: Circuitry for shifting a phase of a radio frequency (RF) signal. Mutually dissimilar and electrically coupled portions of an electromagnetic transmission line pattern on one side of a substrate interact with another electromagnetic transmission line pattern on the opposing substrate side to convey a RF signal with a phase shift that is determined by the RF signal frequency and respective dimensions of the electromagnetic transmission line patterns and is substantially constant over a wide bandwidth. With multiple implementations of such opposing electromagnetic transmission line patterns having different pattern dimensions and coupled between RF signal switches, multiple phase shifts can be selectively provided.
Abstract: System and method for controlling test flow of a radio frequency (RF) signal transceiver device under test (DUT) by inducing an interrupt via an internal signal interface or an external signal interface (with one example of the latter being a baseband signal interface for conveying audio signals). With exemplary embodiments, one or more DUT control signals are provided to or otherwise initiated within the DUT by inducing an interrupt, including inducement via use of the signal interface. With further exemplary embodiments, one or more test control signals are also provided to RF circuitry that responds by transmitting one or more RF receive signals for the DUT and receives from the DUT one or more RF transmit signals related to the one or more DUT control signals.
Type:
Application
Filed:
March 10, 2014
Publication date:
September 10, 2015
Applicant:
LITEPOINT CORPORATION
Inventors:
Christian Volf OLGAARD, Ruizu WANG, Guang SHI