Abstract: A system and method of providing driver software to a test controller to facilitate testing by a wireless transceiver tester of a device under test (DUT). Using the wireless transceiver tester, executable tester instructions are accessed from one or more computer readable media and in accordance therewith bi-directional signal communications are established between the wireless transceiver tester and the test controller, and between the wireless transceiver tester and the DUT. Further accessed are executable driver instructions, including a plurality of executable driver program instructions for driving at least one of the wireless transceiver tester and the DUT, which are communicated to the test controller.
Type:
Application
Filed:
June 21, 2010
Publication date:
December 22, 2011
Applicant:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Niels Vinggaard, Nabil Elserougi, Xiangdong Zhang, Mohan Bollapragada, John Lukez, Benny Madsen, Thomas Toldborg Andersen
Abstract: A system and method for testing a data packet signal transceiver in which multiple network addresses (e.g., media access control, or MAC, addresses) are used to establish synchronization of the device under test and the test equipment controlling the test. In accordance with an exemplary embodiment, synchronization is established using a first MAC address, following which testing is conducted using a second MAC address.
Abstract: A test signal interface and method for allowing sharing of multiple test signal generators among multiple devices under test (DUTs). Digital baseband test signals generated by the multiple test signal generators are combined and converted to a baseband analog signal for conversion to a radio frequency (RF) signal for testing the multiple DUTs.
Abstract: A system and method for testing a plurality of packet data transmitters in which multiple devices-under-test (DUTs) are tested by providing similar transmit data streams to the DUTs each of which, in response thereto, provides a respective packet data signal. At least a portion of each packet data signal is captured to provide captured data packets, which are processed to provide multiple sets of test data respective ones of which, in turn, are analyzed in view of the transmit data to determine an operational status of each DUT.
Abstract: A digital communications test system and method for testing a plurality of devices under test (DUTs) in which multiple sets of a single vector signal analyzer (VSA) and single vector signal generator (VSG) can be used together to perform error vector magnitude (EVM) measurements for one or more DUTs in parallel, including one or more of composite, switched and multiple input multiple output (MIMO) EVM measurements. This allows N pairs of a VSA and VSG to test N DUTs with N×N MIMO in substantially the sane time as a single VSA and VSG pair can test a single DUT, thereby allowing a substantial increase in testing throughput as compared to that possible with only a single VSA and VSG set.
Abstract: A digital communications test system and method for testing a plurality of devices under test (DUTs) in which multiple sets of a single vector signal analyzer (VSA) and single vector signal generator (VSG) can be used together to perform error vector magnitude (EVM) measurements for one or more DUTs in parallel, including one or more of composite, switched and multiple input multiple output (MIMO) EVM measurements. This allows N pairs of a VSA and VSG to test N DUTs with NxN MIMO in substantially the sane time as a single VSA and VSG pair can test a single DUT, thereby allowing a substantial increase in testing throughput as compared to that possible with only a single VSA and VSG set.
Abstract: A method for contemporaneously testing multiple digital data packet transceivers using predefined UL test sequences of synchronized data packets by pre-configuring test measurements, and multiplexing and interleaving portions of the data packets from the devices under test (DUTs).
Type:
Application
Filed:
January 21, 2010
Publication date:
April 21, 2011
Applicant:
LitePoint Corporation
Inventors:
Wassim El-Hassan, Christian Volf Olgaard, Dirk Walvis
Abstract: A method and system for testing multiple data packet transceivers together during a predetermined time interval. A sequence of downlink data packets are generated and distributed as corresponding sequences of downlink data packets for reception by multiple data packet transceivers each one of which is responsive during at least a respective portion of a predetermined time interval to a respective one of the corresponding sequences of downlink data packets by transmitting a respective one of multiple corresponding sequences of uplink data packets. At least a portion of each of the corresponding sequences of uplink data packets are combined to provide a sequence of test data packets of which at least one signal parameter is measured.
Abstract: A test equipment for testing a wireless communication device includes a wireless transceiver and a controller. The wireless transceiver transmits a first series of packets while operating in a first mode. The wireless transceiver transmits a second series of packets while operating in a second mode. The wireless transceiver receives acknowledgment packets. The controller controls the transceiver to transmit the first series of packets. The controller counts the acknowledgment packets received by the transceiver in response to transmitting each of the first series of packets. The controller controls the transceiver to transmit the second series of packets when the count exceeds a predetermined count.
Abstract: A system, method and article of manufacture are provided for utilizing an interface client in an interface roaming network. In general, an interface client in the interface roaming network submits information about the interface client to a wireless link in vicinity to the interface client. The interface client may then subsequently receive content and then display the content on a display.
Type:
Grant
Filed:
August 5, 2009
Date of Patent:
December 7, 2010
Assignee:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Spiros Nikolaos Bouas, Rick William Umstattd, Benny Madsen
Abstract: A method and apparatus for testing multiple data signal transceivers substantially simultaneously with a common transceiver tester by analyzing previously captured data signal transmissions from some of the data signal transceivers while continuing to capture further data signal transmissions from additional ones of the data signal transceivers.
Abstract: A method and apparatus for testing a data signal amplifier having an output signal power dependent upon multiple signal power control parameters, e.g., signal gain control and amplifier bias current control.
Type:
Grant
Filed:
April 16, 2009
Date of Patent:
August 10, 2010
Assignee:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Wassim El-Hassan, Carsten Andersen
Abstract: A method for testing a data packet transceiver as a device under test (DUT) by communicating, between one or more test instruments and the DUT, multiple data packets having at least one mutually distinct signal characteristic, such as data packet type, transmission power or transmission frequency.
Type:
Grant
Filed:
July 10, 2008
Date of Patent:
August 10, 2010
Assignee:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Ray Wang, Peter Petersen
Abstract: A digital communications test system and method for testing a plurality of devices under test (DUTs) in which multiple sets of a single vector signal analyzer (VSA) and single vector signal generator (VSG) can be used together to perform error vector magnitude (EVM) measurements for one or more DUTs in parallel, including one or more of composite, switched and multiple input multiple output (MIMO) EVM measurements. This allows N pairs of a VSA and VSG to test N DUTs with N×N MIMO in substantially the sane time as a single VSA and VSG pair can test a single DUT, thereby allowing a substantial increase in testing throughput as compared to that possible with only a single VSA and VSG set.
Abstract: A method for testing a radio frequency (RF) receiver as a device under test (DUT) with one or more test instruments to provide a plurality of relative power correction factors, a plurality of received signal strength indication (RSSI) calibration factors, or both.
Type:
Application
Filed:
July 10, 2008
Publication date:
January 14, 2010
Applicant:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Carsten Andersen, Peter Petersen, Wassim El-Hassan
Abstract: A method for testing a data packet transceiver as a device under test (DUT) by communicating, between one or more test instruments and the DUT, multiple data packets having at least one mutually distinct signal characteristic, such as data packet type, transmission power or transmission frequency.
Type:
Application
Filed:
July 10, 2008
Publication date:
January 14, 2010
Applicant:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Ray Wang, Peter Petersen
Abstract: An apparatus for testing a communication circuit includes a detection module and a capture module. The detection module provides an enable signal in response to receiving at least one predetermined plurality of data from a communication device under test. The capture module captures at least one other predetermined plurality of data in response to the enable signal.
Type:
Application
Filed:
June 24, 2008
Publication date:
December 24, 2009
Applicant:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Peter Petersen, Kevan Smith
Abstract: A system, method and article of manufacture are provided for utilizing an interface client in an interface roaming network. In general, an interface client in the interface roaming network submits information about the interface client to a wireless link in vicinity to the interface client. The interface client may then subsequently receive content and then display the content on a display.
Type:
Application
Filed:
August 5, 2009
Publication date:
December 10, 2009
Applicant:
LitePoint Corporation
Inventors:
Christian Volf Olgaard, Spiros Nikolaos Bouas, Rick William Umstattd, Benny Madsen
Abstract: A method for testing a wireless transceiver embedded within a wireless data communication system that also includes a host processor with minimal interaction between the wireless transceiver and the host processor during such testing. The wireless signal interface between the wireless data communication system and external test equipment is used to convey test initiation or data signals from the external test equipment to the wireless data communication system, and responsive data or acknowledgement signals from the wireless data communication system to the external test equipment.