Abstract: The disclosure relates generally to a synthetic agricultural product and methods and systems for producing a synthetic agricultural product or composition. The method of producing a synthetic agricultural product may comprise providing an effective amount of fertilizer and/or other agricultural product sufficient to effectuate a response in a plant, an effective amount of a mineral substance having a high cation exchange capacity, and an effective amount of water sufficient to effectuate a desired result in a plant. The fertilizer and/or other agricultural product and mineral substance may be added into the effective amount of water, thereby creating the synthetic agricultural product. Known ions, such as fertilizer ions, and native ions in the native mineral substance may be exchanged to produce a synthetic agricultural product.
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a data capture application of a computing device that receives image data for an image of a document and uses the image data to capture content on the document while minimizing glare at the document. The data capture application receives user input for positioning an image token provided for display to a user of the data capture application. Positioning the image token causes adjustment of an attribute value of the image data. In response to receiving the user input the data capture application determines whether the attribute value of the image data satisfies a predefined attribute value. Based on the attribute value satisfying the predefined attribute value, the data capture application generates a composite image of the document using the image data received by the data capture application.
Type:
Grant
Filed:
December 28, 2018
Date of Patent:
December 14, 2021
Assignee:
Idemia Identity & Security USA LLC
Inventors:
Timothy J. Brown, Joseph R. Mayer, Mike DiNicola, Brian Martin
Abstract: A communication system allows for clock synchronization between a transmitter and a receiver when switching from transmission of an analog signal to transmission of a digital signal. The system uses clock synchronization during transmission of the digital signal, but the clock synchronization may be lost when switching to transmission of an analog signal. A digital clock synchronization is embedded in the analog signal so that the clock synchronization between the transmitter and the receiver may be reestablished upon switching to a digital signal without any delay in transmission of the digital signal.
Abstract: A load control device may be configured to control multiple characteristics of one or more electrical loads such as the intensity and color of a lighting load. The load control device may switch from controlling one characteristic of the electrical loads to controlling another characteristic of the electrical loads based on the position and/or orientation of one or more components of the load control device. Such a position and/or orientation may be manipulated by moving the one or more components relative to a base portion of the load control device. The load control device may be a wall-mounted device or a battery-powered remote control device.
Abstract: A nut clip is disclosed. The nut clip may have a nut and a clip. The clip may have a forward reaction wall and an aft reaction wall structured to react tightening and loosening forces associated with the nut and to facilitate caging of the nut.
Abstract: A method and apparatus for video encoding/decoding are provided. In some examples, an apparatus includes processing circuitry for video decoding. The processing circuitry decodes prediction information of a block in a current picture from a coded video bitstream. The prediction information is indicative of an affine model in an intra block copy mode. The processing circuitry determines parameters for the affine model that transforms between the block and a reference block in a region of the current picture that has been reconstructed. Then, the processing circuitry reconstructs at least a sample of the block based on the affine model.
Abstract: Methods, systems, and apparatus for performing convolutional computations using an optical system. In some aspects computations for a neural network are performed in a digital domain using electronic circuitry, the neural network including a convolutional layer. Input data for the convolutional layer of the neural network is obtained, and a convolution or correlation computation on the input data in an analog domain using an optical correlator module is performed to generate an optical correlator module output. Based on the optical correlator module output, data is processed through additional layers of the neural network in the digital domain using the electronic circuitry.
Type:
Grant
Filed:
March 7, 2017
Date of Patent:
December 14, 2021
Assignee:
X Development LLC
Inventors:
Michael Jason Grundmann, Sylvia Joan Smullin
Abstract: The present disclosure relates generally to optical devices. In particular, the present disclosure provides systems and devices relating to adaptable lens cover assemblies for protecting the optics of various optical devices, such as spotting scopes, telescopes, riflescopes and binoculars. The adaptable lens cover assemblies of the present disclosure are configured to protect the lenses of wide a range of optical devices, and enhance the overall durability and usefulness of an optical device.
Abstract: Systems, methods, and computer-readable storage media for a task management and distribution system. Systems configured as disclosed manage task distribution between various robots, drones, and autonomous vehicles. As tasks are identified as not capable of completion by the detecting robot, they are transmitted to a central task-management system which identifies a subset of robots which are capable of completing the task, determines the availability of the robots in the subset, and assigns one of those robots in the subset to complete the task.
Type:
Grant
Filed:
June 25, 2019
Date of Patent:
December 14, 2021
Assignee:
Walmart Apollo, LLC
Inventors:
John J. O'Brien, Donald R. High, Brian McHale
Abstract: A sand bypass separator is provided for separating particulate matter from a fluid mixture in a production well and directing the separated particulate matter away from a pump intake. The separator includes an outer tube, an inner tube positioned within the outer tube, and a bypass. The outer tube has a plurality of slots to allow the fluid mixture to enter the separator between the outer tube and the inner tube. As the fluid mixture moves downward, the fluid mixture reaches a downward velocity sufficient to allow the particulate matter in the fluid mixture to continue downward as the fluid is drawn into the inner tube through the pump intake. The bypass extends from above the pump intake to below the pump intake to collect and direct the separated particulate matter separated below the pump intake.
Abstract: Devices are provided to automatically access blood from beneath or within skin. These devices include a plurality of injectors configured to drive needles into the skin and draw samples of blood into the device. These devices additionally include a plurality of sensors which can detect a target analyte in the blood samples received by the device. These devices further include a user interface, which may prompt the user to self-administer a dose of a substance, or accept a user input which could affect or otherwise influence the activation of the device (i.e., the firing of needles to draw blood samples into the device and detect an analyte). These devices can be wearable and configured to automatically access blood from skin, for example, to access blood from the skin at one or more points in time after the user has self-administered a dose of a substance.
Type:
Grant
Filed:
November 2, 2018
Date of Patent:
December 14, 2021
Assignee:
Verily Life Sciences LLC
Inventors:
Brett Schleicher, Benjamin Krasnow, Eric Peeters, Peter Smith
Abstract: The subject invention relates to a process of preparing (R)-3-hydroxybutyric acid or a salt thereof by one-step fermentation with a nonpathogenic microorganism. The fermentation of (R)-3-hydroxybutyric acid was performed by supplying with certain carbon and nitrogen sources. These microorganisms include a Glutamic acid Bacterium HR057 strain or one type of genetically engineered Corynebacterium Glutamicum.
Abstract: Methods and apparatus for code-based asymmetric cryptosystem using Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) error correcting codes. Specifically, the method and apparatus generalizes the framework of (QC-MDPC) Code-Based (CB) cryptography from the binary domain (Galois Field of two elements) to an arbitrary size of Galois Field and provides an apparatus for implementing the cryptosystem with a simplified computational complexity of key generation, encryption, and decryption components of the cryptosystems and reduced sizes of the public and private security keys.
Abstract: Techniques to create and use cluster models to predict build failures are provided. In one aspect, clusters in a set of builds may be identified. The identified clusters may be used to create a model. The model may be used to predict causes of build failures. In another aspect, a failed build may be identified. A clustering model may be retrieved. A cause of problems with the failed build may be predicted using the clustering model.
Abstract: Systems and methods of improving alignment in dense prediction neural networks are disclosed. A method includes identifying, at a computing system, an input data set and a label data set with one or more first parts of the input data set corresponding to a label. The computing system processes the input data set using a neural network to generate a predicted label data set that identifies one or more second parts of the input data set predicted to correspond to the label. The computing system determines an alignment result using the predicted label data set and the label data set and a transformation of the one or more first parts, including a shift, rotation, scaling, and/or deformation, based on the alignment result. The computing system computes a loss score using the transformation, label data and the predicted label data set and updates the neural network based on the loss score.