Abstract: Systems and methods are described for providing data to the multiple LED blocks of a LED display board. Each LED block can include an electrical connection or interface that has a reduced complexity compared with prior LED display boards. Six pins may be used for the connections between blocks—including a ground pin, an input/output (I/O) pin, two video link pins, and two communication link pins. Systems and methods are described for controlling the power supplied to LED block(s) of a LED display board. A power controller coordinates the supply of power to the LED blocks. The power controller controls the supply of power to selected groups of the blocks of a video board in a way to reduce the differences in peak instantaneous power supplied to sections of the display board or the entire display board itself, and thereby increase the useful service life of the power supply components.
Abstract: A lighting apparatus is shown and described. In one aspect, the lighting apparatus includes a light source, a plate, and frame. The light source can include one or more lighting elements that are in thermal communication with the light source. The plate can have a dissipative portion extending outward from a point of thermal communication between the plate and the light source. The frame can at least partially enclose the light source and may also be in thermal communication therewith.
Type:
Grant
Filed:
May 6, 2013
Date of Patent:
April 15, 2014
Assignee:
LSI Industries, Inc.
Inventors:
James G. Vanden Eynden, James P. Sferra, Larry A. Akers, John D. Boyer
Abstract: Luminaires are disclosed that include refractive and/or reflective structures that can provide or distribute lighting for a given area with high uniformity and efficiency. The structures can be used to distribute light from one or more light sources for lighting target areas with a desired light distribution. The lighting structures can be included in light strips or luminaires. Such luminaire can be utilized in place of fluorescent lights and can facilitate quick and easy retrofit for previous fluorescent lighting applications. The disclosed techniques and systems (including components and structures) can be particularly useful when employing one or more LEDs as light sources.
Abstract: A lighting device having a support module supporting LEDs and having an outer perimeter defining a curved portion, and a housing with an inner surface having a curved portion configured to receive the curved portion of the support module to enable the disk to be aimed, while the curved portions of the disk and housing remain in contact. Optional adjustment means facilitate aiming of the support module without the need to open the sealed LED module.
Abstract: Lighting apparatus and structures are described to space electrical drivers from a light panel. In this way, a driver box housing the driver can be spaced from the light panel to communicate with pre-existing facilities (e.g. electrical wiring) and can serve the additional advantage of keeping the driver box out of standing water that may accumulate on the structure.
Abstract: A lighting apparatus comprising a first lighting assembly comprising at as one lower light source configured to cast light over at least a near field and a second lighting assembly comprising at least one upper light source configured to cast light over at least a far field, the second lighting assembly mounted above the lighting assembly.
Abstract: A lighting apparatus having a base member and a directional member are shown and described. The base member includes a first surface having a plurality of reflective elements extending therefrom. The base member also including a plurality of openings arranged in a pattern. Each opening is configured to receive a respective light source. The directional member has a portion of a reflective surface positioned relative to at least one opening to reflect light radiating from a lighting source disposed within the opening towards a portion of at least one of the reflective elements extending from the base member.
Abstract: Lighting systems, apparatus, and methods are disclosed, which employ optical transmission of two-dimensional control signals to manipulate lighting elements. The lighting apparatus can include a projector with an IR LED array to wirelessly transmit pixel information onto a target space. The pixel information controls lighting elements within the target space. The two-dimensional control signals can includes subareas corresponding to lighting elements in a control array. The lighting elements can be lights producing light of desired wavelengths including infrared and/or visible wavelengths. LEDs can be used as light sources in exemplary embodiments.
Abstract: Lighting apparatus and structures are described to space electrical drivers from a light panel. In this way, a driver box housing the driver can be spaced from the light panel to communicate with pre-existing facilities (e.g. electrical wiring) and can serve the additional advantage of keeping the driver box out of standing water that may accumulate on the structure.
Abstract: Fixed Frequency, Fixed Duration power controls methods and systems are described for application of power to electrical loads. FFFD techniques according to the present disclosure utilize power train pulses with fixed-frequency fixed-duration pulses to control power applied to a load. The load can be any type of DC load. FFFD techniques allows for controlled variation of the fixed length of the ON pulse, the Fixed length of the OFF or recovery period, the total time period for one cycle, and/or the number of pulses in that time period. Applications to electric motors, electric lighting, and electric heating are described. Related circuits are also described.
Abstract: A lighting apparatus comprising a first lighting assembly comprising at least one lower light source configured to cast light over at least a near field and a second lighting assembly comprising at least one upper light source configured to cast light over at least a far field, the second lighting assembly mounted above the first lighting assembly.
Abstract: A lighting device having a support module supporting LEDs and having an outer perimeter defining a curved portion, and a housing with an inner surface having a curved portion configured to receive the curved portion of the support module to enable the disk to be aimed, while the curved portions of the disk and housing remain in contact. Optional adjustment means facilitate aiming of the support module without the need to open the sealed LED module.
Abstract: A lighting apparatus having a base member and a directional member are shown and described. The base member includes a first surface having a plurality of reflective elements extending therefrom. The base member also including a plurality of openings arranged in a pattern. Each openings is configured to receive a respective light source. The directional member has a portion of a reflective surface positioned relative to at least one opening to reflect light radiating from a lighting source disposed within the opening towards a portion of at least one of the reflective elements extending from the base member.
Abstract: A lighting apparatus is shown and described. In one aspect, the lighting apparatus includes a lighting component and a mounting structure. The lighting component can include a light source, a plate, and a frame. The light source can include one or more lighting elements, such as light emitting diodes. The lighting component can be releasably secured to the mounting structure.
Type:
Grant
Filed:
January 23, 2013
Date of Patent:
October 8, 2013
Assignee:
LSI Industries, Inc.
Inventors:
John D. Boyer, Brian D. Cranston, James G. Vanden Eynden
Abstract: A lighting apparatus having a base member and a directional member are shown and described. The base member includes a first surface having a plurality of reflective elements extending therefrom. The base member also including a plurality of openings arranged in a pattern. Each openings is configured to receive a respective light source. The directional member has a portion of a reflective surface positioned relative to at least one opening to reflect light radiating from a lighting source disposed within the opening towards a portion of at least one of the reflective elements extending from the base member.
Abstract: A lighting apparatus is shown and described. In one aspect, the lighting apparatus includes a lighting component and a mounting structure. The lighting component can include a light source, a plate, and a frame. The light source can include one or more lighting elements, such as light emitting diodes. The lighting component can be releasably secured to the mounting structure.