Patents Assigned to Luxtera
  • Patent number: 10250207
    Abstract: A system for a feedback transimpedance amplifier with sub-40 khz low-frequency cutoff is disclosed and may include amplifying electrical signals received via coupling capacitors utilizing a transimpedance amplifier (TIA) having feedback paths comprising source followers and feedback resistors. The feedback paths may be coupled prior to the coupling capacitors at inputs of the TIA. Voltages may be level shifted prior to the coupling capacitors to ensure stable bias conditions for the TIA. The TIA may be integrated in a CMOS chip and the source followers may comprise CMOS transistors. The TIA may receive current-mode logic or voltage signals. The electrical signals may be received from a photodetector, which may comprise a silicon germanium photodiode and may be differentially coupled to the TIA. The chip may comprise a CMOS photonics chip where optical signals for the photodetector in the CMOS photonics chip may be received via one or more optical fibers.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: April 2, 2019
    Assignee: Luxtera, Inc.
    Inventor: Brian Welch
  • Patent number: 10243674
    Abstract: Methods and systems for a distributed optoelectronic receiver are disclosed and may include an optoelectronic receiver having a grating coupler, a splitter, a plurality of photodiodes, and a plurality of transimpedance amplifiers (TIAs). The receiver receives a modulated optical signal utilizing the grating coupler, splits the received signal into a plurality of optical signals, generates a plurality of electrical signals from the plurality of optical signals utilizing the plurality of photodiodes, communicates the plurality of electrical signals to the plurality of TIAs, amplifies the plurality of electrical signals utilizing the plurality of TIAs, and generates an output electrical signal from coupled outputs of the plurality of TIAs. Each TIA may be configured to amplify signals in a different frequency range. One of the plurality of electrical signals may be DC coupled to a low frequency TIA of the plurality of TIAs.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: March 26, 2019
    Assignee: Luxtera, Inc.
    Inventors: Brian Welch, Gianlorenzo Masini
  • Patent number: 10243672
    Abstract: Methods and systems for waveguide delay based equalization with current and optical summing in optical communication are disclosed and may include an optoelectronic receiver including a directional coupler, two or more photodiodes, and one or more current mirrors. The optoelectronic receiver may be operable to: receive an input optical signal; split the input optical signal into first and second optical signals using the directional coupler; generate a first electrical from the first optical signal using a first photodiode; generate a second electrical signal from the second optical signal using a second photodiode; amplify the second electrical signal using the current mirror; and sum the first electrical signal with the amplified second electrical signal. The optoelectronic receiver may be operable to delay the first optical signal before generating the first electrical signal, using a waveguide delay.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: March 26, 2019
    Assignee: Luxtera, Inc.
    Inventors: Simon Pang, Joseph Balardeta
  • Patent number: 10234642
    Abstract: Methods and systems for a multi-fiber push-on/pull-off connector locking clip are disclosed and may include operatively coupling a multi-fiber push-on/push-off (MPO) connector to an MPO adaptor by inserting the MPO connector into the MPO adaptor, where the MPO connector comprises an MPO connector pull-to-release housing. The MPO connector may be secured to the MPO adaptor by placing an MPO locking clip adjacent to the MPO connector pull-to-release housing, thereby preventing the MPO connector pull-to-release housing from being actuated. An optical cable may be coupled to the MPO connector. The adaptor may be coupled to an optical device, which may include an optical transceiver. The MPO locking clip may be plastic or metal. The MPO connector and the MPO connector pull-to-release housing may be plastic.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 19, 2019
    Assignee: Luxtera, Inc.
    Inventor: Mark Peterson
  • Patent number: 10236985
    Abstract: Methods and systems for silicon photonics wavelength division multiplexing transceivers are disclosed and may include, in a transceiver integrated in a silicon photonics chip: generating a first modulated output optical signal at a first wavelength utilizing a first electrical signal, generating a second modulated output optical signal at a second wavelength utilizing a second electrical signal, communicating the first and second modulated output optical signals into an optical fiber coupled to the chip utilizing a multiplexing grating coupler in the chip. A received input optical signal may be split into a modulated input optical signal at the first wavelength and a modulated input optical signal at the second wavelength utilizing a demultiplexing grating coupler in the chip. The first and second modulated input optical signals may be converted to first and second electrical input signals utilizing first and second photodetectors in the chip.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: March 19, 2019
    Assignee: Luxtera, Inc.
    Inventors: Attila Mekis, Peter De Dobbelaere, Lieven Verslegers, Peng Sun, Yannick De Koninck
  • Patent number: 10234646
    Abstract: Methods and systems for a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed. The CMOS chip may comprise a plurality of lasers, a microlens, a turning mirror, and an optical bench, and may generate optical signals utilizing the lasers, focus the optical signals utilizing the microlens, and reflect the optical signals at an angle defined by the turning mirror. The reflected optical signals may be transmitted into the photonically enabled CMOS chip, which may comprise a non-reciprocal polarization rotator, comprising a latching faraday rotator. The CMOS chip may comprise a reciprocal polarization rotator, which may comprise a half-wave plate comprising birefringent materials operably coupled to the optical bench. The turning mirror may be integrated in the optical bench and may reflect the optical signals to transmit through a lid operably coupled to the optical bench.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: March 19, 2019
    Assignee: Luxtera, Inc.
    Inventors: Michael Mack, Mark Peterson, Steffen Gloeckner, Adithyaram Narasimha, Roger Koumans, Peter De Dobbelaere
  • Patent number: 10236996
    Abstract: Methods and systems for large silicon photonic interposers by stitching are disclosed and may include, in an integrated optical communication system including CMOS electronics die coupled to a silicon photonic interposer, where the interposer includes a plurality of reticle sections: communicating an optical signal between two of the plurality of reticle sections utilizing a waveguide. The waveguide may include a taper region at a boundary between the two reticle sections, the taper region expanding an optical mode of the communicated optical signal prior to the boundary and narrowing the optical mode after the boundary. A continuous wave (CW) optical signal may be received in a first of the reticle sections from an optical source external to the interposer. The CW optical signal may be received in the interposer from an optical source assembly coupled to a grating coupler in the first of the reticle sections in the silicon photonic interposer.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: March 19, 2019
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Attila Mekis, Gianlorenzo Masini
  • Patent number: 10225004
    Abstract: Methods and systems for a connectionless integrated optical receiver and transmitter test are disclosed and may include an optoelectronic transceiver comprising a transmit (Tx) path and a receive (Rx) path, with each path comprising optical switches. The transceiver may be operable to: generate a first modulated optical signal utilizing a modulator in the Tx path, couple the first modulated optical signal to a first optical switch in the Rx path via a second optical switch in the Tx path when the optoelectronic transceiver is configured in a self-test mode, receive a second modulated optical signal via a grating coupler in the Rx path when the optoelectronics transceiver is configured in an operational mode, and communicate the second modulated optical signal to a photodetector in the Rx path via the first optical switch. The first modulated optical signal may be communicated to a grating coupler in the Tx path via the second optical switch.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: March 5, 2019
    Assignee: Luxtera, Inc.
    Inventor: Subal Sahni
  • Patent number: 10222637
    Abstract: A system for integrated power combiners is disclosed and may include receiving optical signals in input optical waveguides and phase-modulating the signals to configure a phase offset between signals received at a first optical coupler, where the first optical coupler may generate output signals having substantially equal optical powers. Output signals of the first optical coupler may be phase-modulated to configure a phase offset between signals received at a second optical coupler, which may generate an output signal having an optical power of essentially zero and a second output signal having a maximized optical power. Optical signals received by the input optical waveguides may be generated utilizing a polarization-splitting grating coupler to enable polarization-insensitive combining of optical signals. Optical power may be monitored using optical detectors. The monitoring of optical power may be used to determine a desired phase offset between the signals received at the first optical coupler.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 5, 2019
    Assignee: Luxtera, Inc.
    Inventors: Attila Mekis, Adithyaram Narasimha, Jeremy Witzens
  • Patent number: 10209540
    Abstract: Methods and systems for a low-parasitic silicon high-speed phase modulator are disclosed and may include fabricating an optical phase modulator that comprises a PN junction waveguide formed in a silicon layer, wherein the silicon layer may be on an oxide layer and the oxide layer may be on a silicon substrate. The PN junction waveguide may have p-doped and n-doped regions on opposite sides along a length of the PN junction waveguide, and portions of the p-doped and n-doped regions may be removed. Contacts may be formed on remaining portions of the p-doped and n-doped regions. Portions of the p-doped and n-doped regions may be removed symmetrically about the PN junction waveguide. Portions of the p-doped and n-doped regions may be removed in a staggered fashion along the length of the PN junction waveguide. Etch transition features may be removed along the p-doped and n-doped regions.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: February 19, 2019
    Assignee: Luxtera, Inc.
    Inventors: Ali Ayazi, Gianlorenzo Masini, Subal Sahni, Attila Mekis, Thierry Pinguet
  • Patent number: 10205533
    Abstract: A method and system for optoelectronic receivers utilizing waveguide heterojunction phototransistors (HPTs) integrated in a wafer are disclosed and may include receiving optical signals via optical fibers operably coupled to a top surface of the chip. Electrical signals may be generated utilizing HPTs that detect the optical signals. The electrical signals may be amplified via voltage amplifiers, or transimpedance amplifiers, the outputs of which may be utilized to bias the HPTs by a feedback network. The optical signals may be coupled into opposite ends of the HPTs. A collector of the HPTs may comprise a silicon layer and a germanium layer, a base may comprise a silicon germanium alloy with germanium composition ranging from 70% to 100%, and an emitter including crystalline or poly Si or SiGe. The optical signals may be demodulated by communicating a mixer signal to a base terminal of the HPTs.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 12, 2019
    Assignee: Luxtera, Inc.
    Inventors: Gianlorenzo Masini, Subal Sahni
  • Patent number: 10185086
    Abstract: A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip comprising photonic, electronic, and optoelectronic devices. The devices may be integrated in a front surface of the chip and one or more optical couplers may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chip via one or more optical fibers and/or optical source assemblies. The optical signals may be coupled to the grating couplers via a light path etched in the chip, which may be refilled with silicon dioxide. The chip may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the grating couplers via metal reflectors, which may be integrated in dielectric layers on the chip.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 22, 2019
    Assignee: Luxtera, Inc.
    Inventors: Thierry Pinguet, Attila Mekis, Steffen Gloeckner
  • Patent number: 10168481
    Abstract: Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may include rows of continuous waveguides with scatterers extending throughout a length of said perturbed waveguides a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSGC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSGC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating coupler may comprise individual scatterers between the perturbed waveguides.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 1, 2019
    Assignee: Luxtera, Inc.
    Inventors: Lieven Verslegers, Attila Mekis
  • Patent number: 10171171
    Abstract: Methods and systems for selectable parallel optical fiber and WDM operation may include an optoelectronic transceiver integrated in a silicon photonics die. The optoelectronic transceiver may, in a first communication mode, communicate continuous wave (CW) optical signals from an optical source module to a first subset of optical couplers on the die for processing signals in optical modulators in accordance with a first communications protocol, and in a second communication mode, communicate the CW optical signals to a second subset of optical couplers for processing signals in the optical modulators in accordance with a second communications protocol. Processed signals may be transmitted out of the die utilizing a third subset of the optical couplers. First or second protocol optical signals may be received from the fiber interface coupled to a fourth subset or a fifth subset, respectively, of the optical couplers.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 1, 2019
    Assignee: Luxtera, Inc.
    Inventors: Greg Young, Peter DeDobbelaere
  • Patent number: 10151894
    Abstract: Methods and systems for optical power monitoring of a light source coupled to a silicon integrated circuit (chip) are disclosed and may include, in a system comprising an optical source coupled to the chip: emitting a primary beam from a front facet of a laser in the optical source assembly and a secondary beam from a back facet of the laser, directing the primary beam to an optical coupler in the chip, directing the secondary beam to a surface-illuminated photodiode in the chip, and monitoring an output power of the laser utilizing an output signal from the photodiode. The primary beam may comprise an optical source for a photonics transceiver in the chip. The focused primary beam and the secondary beam may be directed to the chip using reflectors in a lid of the optical source.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 11, 2018
    Assignee: Luxtera, Inc.
    Inventors: Michael Mack, Subal Sahni, Steffen Gloeckner
  • Patent number: 10141904
    Abstract: Methods and systems for accurate gain adjustment of a transimpedance amplifier using a dual replica and servo loop is disclosed and may include, in a transimpedance amplifier (TIA) circuit comprising a first TIA, a second TIA, and a third TIA, each comprising a configurable feedback impedance, and a control loop, where the control loop comprises a gain stage with inputs coupled to outputs of the first and second TIAs and an output coupled to the configurable feedback impedance of the second and third TIAs: configuring a gain level of the first TIA by configuring its feedback impedance, configuring a gain level of the third TIA by configuring a reference current applied to an input of the first TIA, and amplifying a received electrical signal to generate an output voltage utilizing the third TIA. The reference current may generate a reference voltage at one of the inputs of the gain stage.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: November 27, 2018
    Assignee: Luxtera, Inc.
    Inventors: Stefan Barabas, Joseph Balardeta, Simon Pang, Scott Denton
  • Patent number: 10128957
    Abstract: Methods and systems for a distributed optical transmitter with local domain splitting is disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator utilizing one or more delay lines, generating electrical signals in voltage domains utilizing the domain splitters, modulating received optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains, and generating a modulated output signal through interference of the modulated optical signal in the waveguides of the optical modulator. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: November 13, 2018
    Assignee: Luxtera, Inc.
    Inventors: Brian Welch, Xuelin Xu
  • Patent number: 10128954
    Abstract: A transceiver comprising a chip, a semiconductor laser, and one or more photodetectors, the chip comprising optical and optoelectronic devices and electronic circuitry, where the transceiver is operable to: communicate, utilizing the semiconductor laser, an optical source signal into the chip, generate first optical signals in the chip based on the optical source signal, transmit the first optical signals from the chip via a light pipe with a sloped reflective surface coupled to the chip, and receive second optical signals from the light pipe and converting the second optical signals to electrical signals via the photodetectors. The optical signals may be communicated out of and in to a top surface of the chip. The one or more photodetectors may be integrated in the chip. The optoelectronic devices may include the one or more photodetectors integrated in the chip. The light pipe may be a planar lightwave circuit (PLC).
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 13, 2018
    Assignee: Luxtera, Inc.
    Inventors: Peter DeDobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Patent number: 10122463
    Abstract: Methods and systems for a photonic interposer are disclosed and may include receiving one or more continuous wave (CW) optical signals in a silicon photonic interposer from an external optical source, from an optical source assembly via optical fibers coupled to the silicon photonic interposer. A modulated optical signal may be generated by processing the received CW optical signals based on a first electrical signal received from the electronics die. A second electrical signal may be generated in the silicon photonic interposer based on the generated modulated optical signals, and may then be communicated to the electronics die via copper pillars. Optical signals may be communicated into and/or out of the silicon photonic interposer utilizing grating couplers. The electronics die may comprise one or more of: a processor core, a switch core, memory, or a router.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: November 6, 2018
    Assignee: Luxtera, Inc.
    Inventors: Mark Peterson, Greg Young, Peter De Dobbelaere
  • Patent number: 10120126
    Abstract: Methods and systems for partial integration of wavelength division multiplexing and bi-directional solutions are disclosed and may include, an optical transceiver on a silicon photonics integrated circuit coupled to a planar lightwave circuit (PLC). The silicon photonics integrated circuit may include a first modulator and first light source that operates at a first wavelength and a second modulator and second light source that operates at a second wavelength. The transceiver and PLC are operable to modulate a first continuous wave (CW) optical signal from the first light source utilizing the first modulator and modulate a second CW optical signal from the second light source utilizing the second modulator. The modulated signals may be communicated from the modulators to the PLC utilizing a first pair of grating couplers in the IC and combined in the PLC.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: November 6, 2018
    Assignee: Luxtera, Inc.
    Inventors: Brian Welch, Attila Mekis, Steffan Gloeckner