Patents Assigned to MacroGenics, Inc.
  • Publication number: 20210395374
    Abstract: The present invention is directed to a method of treating a hematologic malignancy such as acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), including hematologic malignancies that are refractive to chemotherapeutic and/or hypomethylating agents. The method concerns administering a CD123×CDS bispecific binding molecule to a patient in an amount effective to stimulate the killing of cells of said hematologic malignancy in said patient. The present invention is additionally directed to the embodiment of such method in which a cellular sample from the patient evidences an expression of one or more target genes that is increased relative to a baseline level of expression of such genes, for example, a baseline level of expression of such genes in a reference population of individuals who are suffering from the hematologic malignancy, or with respect to the level of expression of a reference gene.
    Type: Application
    Filed: October 29, 2019
    Publication date: December 23, 2021
    Applicants: MacroGenics, Inc., NanoString Technologies, Inc., Nottingham Trent University
    Inventors: Jan Kenneth Davidson, Sara Church, Sergio Rutella
  • Patent number: 11174315
    Abstract: The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient subjects.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: November 16, 2021
    Assignee: MacroGenics, Inc.
    Inventors: James Vasselli, Jon Marc Wigginton, Ezio Bonvini, Scott Koenig
  • Patent number: 11111299
    Abstract: The present invention relates to CD3-binding molecules capable of binding to human and non-human CD3, and in particular to such molecules that are cross-reactive with CD3 of a non-human mammal (e.g., a cynomolgus monkey). The invention also pertains to uses of such antibodies and antigen-binding fragments in the treatment of cancer, autoimmune and/or inflammatory diseases and other conditions.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: September 7, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Ling Huang, Leslie S. Johnson
  • Patent number: 11098119
    Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 24, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
  • Patent number: 11098125
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than the antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA. The present invention also provides the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 24, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Robyn Gerena
  • Publication number: 20210246194
    Abstract: The present invention is directed to optimized HIV-1 gp41-Binding Molecules having reduced immunogenicity. More specifically, the invention relates to optimized gp41-Binding Molecules that comprise a gp41-binding Variable Light Chain (VL) Domain and/or a gp41-binding Variable Heavy Chain (VH) Domain that has/have been optimized to reduce the immunogenicity of such Domain(s) upon administration to a recipient subject. The invention particularly pertains to gp41-Binding Molecules that are multispecific gp41-Binding Molecules (including bispecific diabodies (including DART® diabodies), BiTE®s, bispecific antibodies, trivalent binding molecules (including TRIDENT™ molecules), etc.) that comprise: (i) such optimized gp41-binding Variable Domain(s) and (ii) a domain capable of binding to an epitope of a molecule present on the surface of an effector cell.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 12, 2021
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Chia-Ying Kao Lam, Gundo Diedrich, Jeffrey Lee Nordstrom, Liqin Liu, Leslie S. Johnson, Scott Koenig, Barton F. Haynes, Guido Ferrari
  • Patent number: 11078279
    Abstract: This invention relates to a pharmaceutical composition that comprises a first molecule that specifically binds HER2/neu and a second molecule that specifically binds a cell-surface receptor (or its ligand) that is involved in regulating an immune checkpoint (or the ligand thereof). The invention particularly relates to the embodiment wherein the second molecule binds to PD-1. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: August 3, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Jon Marc Wigginton, Naimish Bharat Pandya, Robert Joseph Lechleider, Scott Koenig, Ezio Bonvini
  • Patent number: 11072653
    Abstract: The present invention is directed to the anti-LAG-3 antibodies, LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: July 27, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20210206851
    Abstract: The present invention is directed to the anti-LAG-3 antibodies: LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunoconjugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 8, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20210171630
    Abstract: The present invention is directed to molecules (e.g., an antibody, a diabody, an scFv, an antibody, a TandAb, etc.) capable of binding an epitope of human CD16 (a “CD16 Binding Molecule”). The present invention is further directed to CD 16 Binding Molecules that are capable of binding an epitope of human CD16 and one or more epitope(s) of a Disease Antigen (“DA”) (e.g., a “CD16 x DA Binding Molecule”). The present invention is particularly directed to such CD16 x DA Binding Molecules that are antibodies, or that comprise an Epitope Binding Domain thereof, or are diabodies (including DART® diabodies), bispecific antibodies, TandAbs, other multispecific binding molecules (e.g., trivalent TRIDENT™ molecules), etc. The invention particularly concerns CD16 x DA Binding Molecules that are capable of binding a Disease Antigen that is a Cancer Antigen or a Pathogen-Associated Antigen in addition to being able to bind CD 16.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 10, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Gundo Diedrich, Liqin Liu, Hua Watson Li, Leslie S. Johnson
  • Patent number: 11028183
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: June 8, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Publication number: 20210155694
    Abstract: The present invention is directed to DA×CD3 Binding Molecules comprising a vCD3-Binding Domain, which comprises a CDRHI Domain, a CDRH2 Domain, a CDRH3 Domain, a CDRL I Domain, a CDRL2 Domain, and a CDRL3 Domain, at least one of which differs in amino acid sequence from the amino acid sequence of the corresponding CDR of a rCD3-Binding Domain, wherein the DA×CD3 Binding Molecule comprising such vCD3-Binding Domain exhibits an altered affinity for CD3, relative to a DA×CD3 Binding Molecule comprising such rCD3-Binding Domain. The invention particularly concerns to such DA×CD3 Binding Molecules comprising a vCD3-Binding Domain which exhibit reduced affinity for CD3 and are capable of mediating redirected killing of target cells expressing a DA and exhibit lower levels of cytokine release relative to a DA×CD3 Binding Molecule comprising a rCD3-Binding Domain.
    Type: Application
    Filed: February 13, 2019
    Publication date: May 27, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Ling Huang, Chia-Ying Kao Lam, Gurunadh Reddy Chichili, Ralph Froman Alderson, Paul A. Moore, Leslie S. Johnson
  • Publication number: 20210095021
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Application
    Filed: June 22, 2020
    Publication date: April 1, 2021
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Patent number: 10961311
    Abstract: The present invention is directed to novel B7-H3-binding molecules capable of binding to human and non-human B7-H3, and in particular to such molecules that are cross-reactive with B7-H3 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to B7-H3-binding molecules that comprise Variable Light Chain and/or Variable Heavy Chain (VH) Domains that have been humanized and/or deimmunized so as to exhibit a reduced immunogenicity upon administration to recipient subjects. The invention particularly pertains to bispecific, trispecific or multispecific B7-H3-binding molecules, including bispecific diabodies, BiTEs, bispecific antibodies, trivalent binding molecules, etc. that comprise: (i) such B7-H3-binding Variable Domains and (ii) a domain capable of binding to an epitope of a molecule present on the surface of an effector cell.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: March 30, 2021
    Assignee: MACROGENICS, INC.
    Inventors: Deryk T. Loo, Ling Huang, Leslie S. Johnson, Thomas Son, Juniper A. Scribner, Ezio Bonvini
  • Patent number: 10954301
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 23, 2021
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20210061911
    Abstract: The present invention is directed to a dosing regimen for administering a CD123×CD3 bi-specific monovalent diabody to patients with a hematologic malignancy such as acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). The invention particularly concerns the use of such a regimen for the sequence-optimized CD 123×CD3 bi-specific monovalent diabody “DART-A,” that is capable of simultaneous binding to CD 123 and CD3.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 4, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Jon Marc Wigginton, Ralph Froman Alderson, Robert Joseph Lechleider
  • Publication number: 20210047426
    Abstract: The present invention is directed to sequence-optimized CD123×CD3 bi-specific monovalent diabodies that are capable of simultaneous binding to CD123 and CD3, and to the uses of such diabodies in the treatment of hematologic malignancies.
    Type: Application
    Filed: August 24, 2020
    Publication date: February 18, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Ling Huang, Paul A. Moore, Gurunadh Reddy Chichili, Ralph Froman Alderson
  • Publication number: 20200392245
    Abstract: The present invention relates to methods of treating or preventing cancer and other diseases using molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds an Fc?R that activates a cellular effector (“Fc?RActivating,” such as Fc?RIIA or Fc?RIIIA) and an Fc?R that inhibits a cellular effector (“Fc?RInhibiting,” such as Fc?RIIA) with an altered Ratio of Affinities relative to the respective binding affinities of such Fc?R for the Fc region of the wild-type immunoglobulin. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 17, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Jeffrey B. Stavenhagen, Scott Koenig
  • Patent number: 10858430
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise two polypeptide chains and which possess at least one binding site specific for an epitope of CD3 and one binding site specific for an epitope of gpA33 (i.e., a “gpA33×CD3 bi-specific monovalent diabody”). The present invention also is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of gpA33 and one binding site specific for an epitope of CD3 (i.e., a “gpA33×CD3 bi-specific monovalent Fc diabody”). The bi-specific monovalent diabodies and bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to gpA33 and CD3. The invention is directed to pharmaceutical compositions that contain such bi-specific monovalent diabodies or such bi-specific monovalent Fc diabodies.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 8, 2020
    Assignee: MacroGenics, Inc.
    Inventors: Paul A. Moore, Jonathan Li, Francine Zhifen Chen, Leslie S. Johnson, Kalpana Shah, Ezio Bonvini
  • Publication number: 20200377612
    Abstract: The present invention relates to antibodies and their fragments that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies and their immunoreactive fragments that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: May 7, 2020
    Publication date: December 3, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Paul A. Moore, Ling Huang, Deryk T. Loo, Francine Zhifen Chen